1,239 research outputs found

    Cognitive Security Framework For Heterogeneous Sensor Network Using Swarm Intelligence

    Get PDF
    Rapid development of sensor technology has led to applications ranging from academic to military in a short time span. These tiny sensors are deployed in environments where security for data or hardware cannot be guaranteed. Due to resource constraints, traditional security schemes cannot be directly applied. Unfortunately, due to minimal or no communication security schemes, the data, link and the sensor node can be easily tampered by intruder attacks. This dissertation presents a security framework applied to a sensor network that can be managed by a cohesive sensor manager. A simple framework that can support security based on situation assessment is best suited for chaotic and harsh environments. The objective of this research is designing an evolutionary algorithm with controllable parameters to solve existing and new security threats in a heterogeneous communication network. An in-depth analysis of the different threats and the security measures applied considering the resource constrained network is explored. Any framework works best, if the correlated or orthogonal performance parameters are carefully considered based on system goals and functions. Hence, a trade-off between the different performance parameters based on weights from partially ordered sets is applied to satisfy application specific requirements and security measures. The proposed novel framework controls heterogeneous sensor network requirements,and balance the resources optimally and efficiently while communicating securely using a multi-objection function. In addition, the framework can measure the affect of single or combined denial of service attacks and also predict new attacks under both cooperative and non-cooperative sensor nodes. The cognitive intuition of the framework is evaluated under different simulated real time scenarios such as Health-care monitoring, Emergency Responder, VANET, Biometric security access system, and Battlefield monitoring. The proposed three-tiered Cognitive Security Framework is capable of performing situation assessment and performs the appropriate security measures to maintain reliability and security of the system. The first tier of the proposed framework, a crosslayer cognitive security protocol defends the communication link between nodes during denial-of-Service attacks by re-routing data through secure nodes. The cognitive nature of the protocol balances resources and security making optimal decisions to obtain reachable and reliable solutions. The versatility and robustness of the protocol is justified by the results obtained in simulating health-care and emergency responder applications under Sybil and Wormhole attacks. The protocol considers metrics from each layer of the network model to obtain an optimal and feasible resource efficient solution. In the second tier, the emergent behavior of the protocol is further extended to mine information from the nodes to defend the network against denial-of-service attack using Bayesian models. The jammer attack is considered the most vulnerable attack, and therefore simulated vehicular ad-hoc network is experimented with varied types of jammer. Classification of the jammer under various attack scenarios is formulated to predict the genuineness of the attacks on the sensor nodes using receiver operating characteristics. In addition to detecting the jammer attack, a simple technique of locating the jammer under cooperative nodes is implemented. This feature enables the network in isolating the jammer or the reputation of node is affected, thus removing the malicious node from participating in future routes. Finally, a intrusion detection system using `bait\u27 architecture is analyzed where resources is traded-off for the sake of security due to sensitivity of the application. The architecture strategically enables ant agents to detect and track the intruders threateningthe network. The proposed framework is evaluated based on accuracy and speed of intrusion detection before the network is compromised. This process of detecting the intrusion earlier helps learn future attacks, but also serves as a defense countermeasure. The simulated scenarios of this dissertation show that Cognitive Security Framework isbest suited for both homogeneous and heterogeneous sensor networks

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    Using Multi-agent System for Solving Coverage Problem in Wireless Sensor Network

    Get PDF
    Wireless sensor network (WSN) is one of the most important paradigms in computer networks because of the widespread applications. Coverage problem is a fundamental issue in sensor networks that reflects how the network is controlled by the sensors, this problem appears when any node becomes failure or out of the range, in this case the area will be disconnected and the data will not send to the destination. We present a new approach which uses a multi-agent system to solve this problem and perform an easy and secure network. In order to do that we implement sensor network by four phases: first construct a virtual network by matlab, second we use k-means clustering to cluster nodes in k-groups, third put the intelligent sensor in each cluster to be as a head for its group, fourth we divide the network to four regions and the closet agent to the sink will be the delegate to send the aggregated data from its region to the destination. Therefore, we tried to minimize the power consumption in WSN, we save the energy by keeping it sleep until it has a task to do , at this case the node changes its status to be in active mode and when it finishes it will be idle

    Safe Routing Approach by Identifying and Subsequently Eliminating the Attacks in MANET

    Full text link
    Wireless networks that are decentralized and communicate without using existing infrastructure are known as mobile ad-hoc networks. The most common sorts of threats and attacks can affect MANETs. Therefore, it is advised to utilize intrusion detection, which controls the system to detect additional security issues. Monitoring is essential to avoid attacks and provide extra protection against unauthorized access. Although the current solutions have been designed to defeat the attack nodes, they still require additional hardware, have considerable delivery delays, do not offer high throughput or packet delivery ratios, or do not do so without using more energy. The capability of a mobile node to forward packets, which is dependent on the platform's life quality, may be impacted by the absence of the network node power source. We developed the Safe Routing Approach (SRA), which uses behaviour analysis to track and monitor attackers who discard packets during the route discovery process. The attacking node recognition system is made for irregular routing node detection to protect the controller network's usual properties from becoming recognized as an attack node. The suggested method examines the nearby attack nodes and conceals the trusted node in the routing pathway. The path is instantly assigned after the initial discovery of trust nodes based on each node's strength value. It extends the network's life span and reduces packet loss. In terms of Packet Delivery Ratio (PDR), energy consumption, network performance, and detection of attack nodes, the suggested approach is contrasted with AIS, ZIDS, and Improved AODV. The findings demonstrate that the recommended strategy performs superior in terms of PDR, residual energy, and network throughput

    FOR SECURE MEDICAL CARE: USES OF SENSORS & WIRELESS COMMUNICATION

    Get PDF
    Biological, chemical, and radiological agents can tamper with the activities of medical care providers, patient samples, and medicine administration. Which brings patients to a major risk? The challenge is to use the concepts of sensors to detect and monitor any violations in the medical care environment. Wireless devices must communicate multimedia data such as patient information, laboratory results, prescriptions, and X- ray and ECG reports. A discussion of sensors in patient rooms, clinics/wards, hospitals, and measurements of safety and security is presented. The available devices for sensor and wireless communication are also briefly included

    A secure authentication protocol for IP-based wireless sensor communications using the location/ID split protocol (LISP)

    Get PDF
    The future of the Internet of Things (IoT) involves a huge number of node devices such as wireless sensors that can communicate in a machine-to-machine pattern, where devices will be globally addressed and identified. As the number of connected devices increased, the burden on the network infrastructure and the size of the routing tables and the efficiency of the current routing protocols in the Internet backbone increased as well. Recently, an IETF working group, along with the research group at Cisco, are working on a Locator/ID Separation Protocol as a routing architecture that provides new semantics for IP addressing, in order to simplify routing operations and improve scalability in the future of the Internet such as the IoT. In the light of the previous issue; this paper proposes an efficient security authentication and a key exchange scheme that is suited for Internet of things based on Locator/ID Separation protocol. The proposed protocol method meets practicability, simplicity, and strong notions of security. The protocol is verified using Automated Validation Internet Security Protocols and Applications (AVISPA) which is a push button tool for the automated validation of security protocols and the achieved results showed that they do not have any security flaws
    • …
    corecore