1,456 research outputs found

    Bayesian Spatial Binary Regression for Label Fusion in Structural Neuroimaging

    Full text link
    Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across subjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimer's disease.Comment: 24 pages, 10 figure

    Cortical spatio-temporal dimensionality reduction for visual grouping

    Full text link
    The visual systems of many mammals, including humans, is able to integrate the geometric information of visual stimuli and to perform cognitive tasks already at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at single cell level and geometric processing by means of cells connectivity. We present a geometric model of such connectivities in the space of detected features associated to spatio-temporal visual stimuli, and show how they can be used to obtain low-level object segmentation. The main idea is that of defining a spectral clustering procedure with anisotropic affinities over datasets consisting of embeddings of the visual stimuli into higher dimensional spaces. Neural plausibility of the proposed arguments will be discussed

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Fast and robust hybrid framework for infant brain classification from structural MRI : a case study for early diagnosis of autism.

    Get PDF
    The ultimate goal of this work is to develop a computer-aided diagnosis (CAD) system for early autism diagnosis from infant structural magnetic resonance imaging (MRI). The vital step to achieve this goal is to get accurate segmentation of the different brain structures: whitematter, graymatter, and cerebrospinal fluid, which will be the main focus of this thesis. The proposed brain classification approach consists of two major steps. First, the brain is extracted based on the integration of a stochastic model that serves to learn the visual appearance of the brain texture, and a geometric model that preserves the brain geometry during the extraction process. Secondly, the brain tissues are segmented based on shape priors, built using a subset of co-aligned training images, that is adapted during the segmentation process using first- and second-order visual appearance features of infant MRIs. The accuracy of the presented segmentation approach has been tested on 300 infant subjects and evaluated blindly on 15 adult subjects. The experimental results have been evaluated by the MICCAI MR Brain Image Segmentation (MRBrainS13) challenge organizers using three metrics: Dice coefficient, 95-percentile Hausdorff distance, and absolute volume difference. The proposed method has been ranked the first in terms of performance and speed

    Advanced Algorithms for 3D Medical Image Data Fusion in Specific Medical Problems

    Get PDF
    Fúze obrazu je dnes jednou z nejběžnějších avšak stále velmi diskutovanou oblastí v lékařském zobrazování a hraje důležitou roli ve všech oblastech lékařské péče jako je diagnóza, léčba a chirurgie. V této dizertační práci jsou představeny tři projekty, které jsou velmi úzce spojeny s oblastí fúze medicínských dat. První projekt pojednává o 3D CT subtrakční angiografii dolních končetin. V práci je využito kombinace kontrastních a nekontrastních dat pro získání kompletního cévního stromu. Druhý projekt se zabývá fúzí DTI a T1 váhovaných MRI dat mozku. Cílem tohoto projektu je zkombinovat stukturální a funkční informace, které umožňují zlepšit znalosti konektivity v mozkové tkáni. Třetí projekt se zabývá metastázemi v CT časových datech páteře. Tento projekt je zaměřen na studium vývoje metastáz uvnitř obratlů ve fúzované časové řadě snímků. Tato dizertační práce představuje novou metodologii pro klasifikaci těchto metastáz. Všechny projekty zmíněné v této dizertační práci byly řešeny v rámci pracovní skupiny zabývající se analýzou lékařských dat, kterou vedl pan Prof. Jiří Jan. Tato dizertační práce obsahuje registrační část prvního a klasifikační část třetího projektu. Druhý projekt je představen kompletně. Další část prvního a třetího projektu, obsahující specifické předzpracování dat, jsou obsaženy v disertační práci mého kolegy Ing. Romana Petera.Image fusion is one of today´s most common and still challenging tasks in medical imaging and it plays crucial role in all areas of medical care such as diagnosis, treatment and surgery. Three projects crucially dependent on image fusion are introduced in this thesis. The first project deals with the 3D CT subtraction angiography of lower limbs. It combines pre-contrast and contrast enhanced data to extract the blood vessel tree. The second project fuses the DTI and T1-weighted MRI brain data. The aim of this project is to combine the brain structural and functional information that purvey improved knowledge about intrinsic brain connectivity. The third project deals with the time series of CT spine data where the metastases occur. In this project the progression of metastases within the vertebrae is studied based on fusion of the successive elements of the image series. This thesis introduces new methodology of classifying metastatic tissue. All the projects mentioned in this thesis have been solved by the medical image analysis group led by Prof. Jiří Jan. This dissertation concerns primarily the registration part of the first project and the classification part of the third project. The second project is described completely. The other parts of the first and third project, including the specific preprocessing of the data, are introduced in detail in the dissertation thesis of my colleague Roman Peter, M.Sc.

    Automated Morphometric Characterization of the Cerebral Cortex for the Developing and Ageing Brain

    Get PDF
    Morphometric characterisation of the cerebral cortex can provide information about patterns of brain development and ageing and may be relevant for diagnosis and estimation of the progression of diseases such as Alzheimer's, Huntington's, and schizophrenia. Therefore, understanding and describing the differences between populations in terms of structural volume, shape and thickness is of critical importance. Methodologically, due to data quality, presence of noise, PV effects, limited resolution and pathological variability, the automated, robust and time-consistent estimation of morphometric features is still an unsolved problem. This thesis focuses on the development of tools for robust cross-sectional and longitudinal morphometric characterisation of the human cerebral cortex. It describes techniques for tissue segmentation, structural and morphometric characterisation, cross-sectional and longitudinally cortical thickness estimation from serial MRI images in both adults and neonates. Two new probabilistic brain tissue segmentation techniques are introduced in order to accurately and robustly segment the brain of elderly and neonatal subjects, even in the presence of marked pathology. Two other algorithms based on the concept of multi-atlas segmentation propagation and fusion are also introduced in order to parcelate the brain into its multiple composing structures with the highest possible segmentation accuracy. Finally, we explore the use of the Khalimsky cubic complex framework for the extraction of topologically correct thickness measurements from probabilistic segmentations without explicit parametrisation of the edge. A longitudinal extension of this method is also proposed. The work presented in this thesis has been extensively validated on elderly and neonatal data from several scanners, sequences and protocols. The proposed algorithms have also been successfully applied to breast and heart MRI, neck and colon CT and also to small animal imaging. All the algorithms presented in this thesis are available as part of the open-source package NiftySeg

    Brain MR Image Segmentation: From Multi-Atlas Method To Deep Learning Models

    Get PDF
    Quantitative analysis of the brain structures on magnetic resonance (MR) images plays a crucial role in examining brain development and abnormality, as well as in aiding the treatment planning. Although manual delineation is commonly considered as the gold standard, it suffers from the shortcomings in terms of low efficiency and inter-rater variability. Therefore, developing automatic anatomical segmentation of human brain is of importance in providing a tool for quantitative analysis (e.g., volume measurement, shape analysis, cortical surface mapping). Despite a large number of existing techniques, the automatic segmentation of brain MR images remains a challenging task due to the complexity of the brain anatomical structures and the great inter- and intra-individual variability among these anatomical structures. To address the existing challenges, four methods are proposed in this thesis. The first work proposes a novel label fusion scheme for the multi-atlas segmentation. A two-stage majority voting scheme is developed to address the over-segmentation problem in the hippocampus segmentation of brain MR images. The second work of the thesis develops a supervoxel graphical model for the whole brain segmentation, in order to relieve the dependencies on complicated pairwise registration for the multi-atlas segmentation methods. Based on the assumption that pixels within a supervoxel are supposed to have the same label, the proposed method converts the voxel labeling problem to a supervoxel labeling problem which is solved by a maximum-a-posteriori (MAP) inference in Markov random field (MRF) defined on supervoxels. The third work incorporates attention mechanism into convolutional neural networks (CNN), aiming at learning the spatial dependencies between the shallow layers and the deep layers in CNN and producing an aggregation of the attended local feature and high-level features to obtain more precise segmentation results. The fourth method takes advantage of the success of CNN in computer vision, combines the strength of the graphical model with CNN, and integrates them into an end-to-end training network. The proposed methods are evaluated on public MR image datasets, such as MICCAI2012, LPBA40, and IBSR. Extensive experiments demonstrate the effectiveness and superior performance of the three proposed methods compared with the other state-of-the-art methods

    Towards a Mathematical Theory of Cortical Micro-circuits

    Get PDF
    The theoretical setting of hierarchical Bayesian inference is gaining acceptance as a framework for understanding cortical computation. In this paper, we describe how Bayesian belief propagation in a spatio-temporal hierarchical model, called Hierarchical Temporal Memory (HTM), can lead to a mathematical model for cortical circuits. An HTM node is abstracted using a coincidence detector and a mixture of Markov chains. Bayesian belief propagation equations for such an HTM node define a set of functional constraints for a neuronal implementation. Anatomical data provide a contrasting set of organizational constraints. The combination of these two constraints suggests a theoretically derived interpretation for many anatomical and physiological features and predicts several others. We describe the pattern recognition capabilities of HTM networks and demonstrate the application of the derived circuits for modeling the subjective contour effect. We also discuss how the theory and the circuit can be extended to explain cortical features that are not explained by the current model and describe testable predictions that can be derived from the model
    corecore