159 research outputs found

    Decentralized Model Predictive Control of Swarms of Spacecraft Using Sequential Convex Programming

    Get PDF
    This paper presents a decentralized, model predictive control algorithm for the reconfiguration of swarms of spacecraft composed of hundreds to thousands of agents with limited capabilities. In our prior work, sequential convex programming has been used to determine collision-free, fuel-efficient trajectories for the reconfiguration of spacecraft swarms. This paper uses a model predictive control approach to implement the sequential convex programming algorithm in real-time. By updating the optimal trajectories during the reconfiguration, the model predictive control algorithm results in decentralized computations and communication between neighboring spacecraft only. Additionally, model predictive control reduces the horizon of the convex optimizations, which reduces the run time of the algorithm

    Multi Vehicle Trajectory Planning On Road Networks

    Get PDF
    When multiple autonomous vehicles work in a shared space, such as in a surface mine or warehouse, they often travel along specified paths through a static road network. Although these vehicles’ actions and performance are coupled, their motion is often planned myopically or omits cooperation beyond avoiding collisions reactively. More desirable solutions could be achieved by coordinating and planning actions ahead of time. To make multi-vehicle systems more productive and efficient, the thesis introduces planning methods that can optimise for travel time, energy consumption, and trajectory smoothness. Vehicle motion is coordinated by using motion models that combine all trajectories, and avoid collisions. Mathematical programming is then used to find optimised solutions. The proposed methods are shown to significantly reduce solution costs compared to an approach based on common driving practices. As the number of vehicles and interactions between them increases, the number of solutions grows exponentially, making finding a solution computationally challenging. A major aim here was to find high quality solutions within practical computation times. To achieve this, techniques were developed that exploit the structure of the problems. This includes a heuristic algorithm that scales better with problem size, and is combined with the mathematical programming techniques to reduce their complexity. These were found to significantly reduce computation times, trading off marginal solution quality

    Discrete Path Planing Strategies for Coverage and Multi-Robot Rendezvous

    Get PDF
    This thesis addresses the problem of motion planning for autonomous robots, given a map and an estimate of the robot pose within it. The motion planning problem for a mobile robot can be defined as computing a trajectory in an environment from one pose to another while avoiding obstacles and optimizing some objective such as path length or travel time, subject to constraints like vehicle dynamics limitations. More complex planning problems such as multi-robot planning or complete coverage of an area can also be defined within a similar optimization structure. The computational complexity of path planning presents a considerable challenge for real-time execution with limited resources and various methods of simplifying the problem formulation by discretizing the solution space are grouped under the class of discrete planning methods. The approach suggests representing the environment as a roadmap graph and formulating shortest path problems to compute optimal robot trajectories on it. This thesis presents two main contributions under the framework of discrete planning. The first contribution addresses complete coverage of an unknown environment by a single omnidirectional ground rover. The 2D occupancy grid map of the environment is first converted into a polygonal representation and decomposed into a set of convex sectors. Second, a coverage path is computed through the sectors using a hierarchical inter-sector and intra-sector optimization structure. It should be noted that both convex decomposition and optimal sector ordering are known NP-hard problems, which are solved using a greedy cut approximation algorithm and Travelling Salesman Problem (TSP) heuristics, respectively. The second contribution presents multi-robot path-planning strategies for recharging autonomous robots performing a persistent task. The work considers the case of surveillance missions performed by a team of Unmanned Aerial Vehicles (UAVs). The goal is to plan minimum cost paths for a separate team of dedicated charging robots such that they rendezvous with and recharge all the UAVs as needed. To this end, planar UAV trajectories are discretized into sets of charging locations and a partitioned directed acyclic graph subject to timing constraints is defined over them. Solutions consist of paths through the graph for each of the charging robots. The rendezvous planning problem for a single recharge cycle is formulated as a Mixed Integer Linear Program (MILP), and an algorithmic approach, using a transformation to the TSP, is presented as a scalable heuristic alternative to the MILP. The solution is then extended to longer planning horizons using both a receding horizon and an optimal fixed horizon strategy. Simulation results are presented for both contributions, which demonstrate solution quality and performance of the presented algorithms

    Discrete Path Planing Strategies for Coverage and Multi-Robot Rendezvous

    Get PDF
    This thesis addresses the problem of motion planning for autonomous robots, given a map and an estimate of the robot pose within it. The motion planning problem for a mobile robot can be defined as computing a trajectory in an environment from one pose to another while avoiding obstacles and optimizing some objective such as path length or travel time, subject to constraints like vehicle dynamics limitations. More complex planning problems such as multi-robot planning or complete coverage of an area can also be defined within a similar optimization structure. The computational complexity of path planning presents a considerable challenge for real-time execution with limited resources and various methods of simplifying the problem formulation by discretizing the solution space are grouped under the class of discrete planning methods. The approach suggests representing the environment as a roadmap graph and formulating shortest path problems to compute optimal robot trajectories on it. This thesis presents two main contributions under the framework of discrete planning. The first contribution addresses complete coverage of an unknown environment by a single omnidirectional ground rover. The 2D occupancy grid map of the environment is first converted into a polygonal representation and decomposed into a set of convex sectors. Second, a coverage path is computed through the sectors using a hierarchical inter-sector and intra-sector optimization structure. It should be noted that both convex decomposition and optimal sector ordering are known NP-hard problems, which are solved using a greedy cut approximation algorithm and Travelling Salesman Problem (TSP) heuristics, respectively. The second contribution presents multi-robot path-planning strategies for recharging autonomous robots performing a persistent task. The work considers the case of surveillance missions performed by a team of Unmanned Aerial Vehicles (UAVs). The goal is to plan minimum cost paths for a separate team of dedicated charging robots such that they rendezvous with and recharge all the UAVs as needed. To this end, planar UAV trajectories are discretized into sets of charging locations and a partitioned directed acyclic graph subject to timing constraints is defined over them. Solutions consist of paths through the graph for each of the charging robots. The rendezvous planning problem for a single recharge cycle is formulated as a Mixed Integer Linear Program (MILP), and an algorithmic approach, using a transformation to the TSP, is presented as a scalable heuristic alternative to the MILP. The solution is then extended to longer planning horizons using both a receding horizon and an optimal fixed horizon strategy. Simulation results are presented for both contributions, which demonstrate solution quality and performance of the presented algorithms

    Decentralized Model Predictive Control of Swarms of Spacecraft Using Sequential Convex Programming

    Get PDF
    This paper presents a decentralized, model predictive control algorithm for the reconfiguration of swarms of spacecraft composed of hundreds to thousands of agents with limited capabilities. In our prior work, sequential convex programming has been used to determine collision-free, fuel-efficient trajectories for the reconfiguration of spacecraft swarms. This paper uses a model predictive control approach to implement the sequential convex programming algorithm in real-time. By updating the optimal trajectories during the reconfiguration, the model predictive control algorithm results in decentralized computations and communication between neighboring spacecraft only. Additionally, model predictive control reduces the horizon of the convex optimizations, which reduces the run time of the algorithm

    Spacecraft Swarm Guidance Using a Sequence of Decentralized Convex Optimizations

    Get PDF
    This paper presents partially decentralized path planning algorithms for swarms of spacecraft composed of hundreds to thousands of agents with each spacecraft having limited computational capabilities. In our prior work, J2-invariant orbits have been found to provide collision free motion for hundreds of orbits. This paper develops algorithms for the swarm reconfiguration which involves transferring from one J2-invariant orbit to another avoiding collisions and minimizing fuel. To perform collision avoidance, it is assumed that the spacecraft can communicate their trajectories with each other. The algorithm uses sequential convex programming to solve a series of approximate path planning problems until the solution converges. Two decentralized methods are developed: a serial method where the spacecraft take turn updating their trajectories and a parallel method where all of the spacecraft update their trajectories simultaneously
    • …
    corecore