10,194 research outputs found

    Contraction of Locally Differentially Private Mechanisms

    Full text link
    We investigate the contraction properties of locally differentially private mechanisms. More specifically, we derive tight upper bounds on the divergence between PKP\mathsf{K} and QKQ\mathsf{K} output distributions of an ε\varepsilon-LDP mechanism K\mathsf{K} in terms of a divergence between the corresponding input distributions PP and QQ, respectively. Our first main technical result presents a sharp upper bound on the χ2\chi^2-divergence χ2(PK∥QK)\chi^2(P\mathsf{K}\|Q\mathsf{K}) in terms of χ2(P∥Q)\chi^2(P\|Q) and ε\varepsilon. We also show that the same result holds for a large family of divergences, including KL-divergence and squared Hellinger distance. The second main technical result gives an upper bound on χ2(PK∥QK)\chi^2(P\mathsf{K}\|Q\mathsf{K}) in terms of total variation distance TV(P,Q)\mathsf{TV}(P, Q) and ε\varepsilon. We then utilize these bounds to establish locally private versions of the van Trees inequality, Le Cam's, Assouad's, and the mutual information methods, which are powerful tools for bounding minimax estimation risks. These results are shown to lead to better privacy analyses than the state-of-the-arts in several statistical problems such as entropy and discrete distribution estimation, non-parametric density estimation, and hypothesis testing

    The Role of Interactivity in Local Differential Privacy

    Full text link
    We study the power of interactivity in local differential privacy. First, we focus on the difference between fully interactive and sequentially interactive protocols. Sequentially interactive protocols may query users adaptively in sequence, but they cannot return to previously queried users. The vast majority of existing lower bounds for local differential privacy apply only to sequentially interactive protocols, and before this paper it was not known whether fully interactive protocols were more powerful. We resolve this question. First, we classify locally private protocols by their compositionality, the multiplicative factor k≥1k \geq 1 by which the sum of a protocol's single-round privacy parameters exceeds its overall privacy guarantee. We then show how to efficiently transform any fully interactive kk-compositional protocol into an equivalent sequentially interactive protocol with an O(k)O(k) blowup in sample complexity. Next, we show that our reduction is tight by exhibiting a family of problems such that for any kk, there is a fully interactive kk-compositional protocol which solves the problem, while no sequentially interactive protocol can solve the problem without at least an Ω~(k)\tilde \Omega(k) factor more examples. We then turn our attention to hypothesis testing problems. We show that for a large class of compound hypothesis testing problems --- which include all simple hypothesis testing problems as a special case --- a simple noninteractive test is optimal among the class of all (possibly fully interactive) tests
    • …
    corecore