9,308 research outputs found

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs

    Distributed Storage in Mobile Wireless Networks with Device-to-Device Communication

    Get PDF
    We consider the use of distributed storage (DS) to reduce the communication cost of content delivery in wireless networks. Content is stored (cached) in a number of mobile devices using an erasure correcting code. Users retrieve content from other devices using device-to-device communication or from the base station (BS), at the expense of higher communication cost. We address the repair problem when a device storing data leaves the cell. We introduce a repair scheduling where repair is performed periodically and derive analytical expressions for the overall communication cost of content download and data repair as a function of the repair interval. The derived expressions are then used to evaluate the communication cost entailed by DS using several erasure correcting codes. Our results show that DS can reduce the communication cost with respect to the case where content is downloaded only from the BS, provided that repairs are performed frequently enough. If devices storing content arrive to the cell, the communication cost using DS is further reduced and, for large enough arrival rate, it is always beneficial. Interestingly, we show that MDS codes, which do not perform well for classical DS, can yield a low overall communication cost in wireless DS.Comment: After final editing for publication in TCO

    Statistical Mechanics of Broadcast Channels Using Low Density Parity Check Codes

    Get PDF
    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple timesharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based timesharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the timesharing limit.Comment: 14 pages, 4 figure

    Statistical Mechanics of Broadcast Channels Using Low Density Parity Check Codes

    Get PDF
    We investigate the use of Gallager's low-density parity-check (LDPC) codes in a broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple timesharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based timesharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the timesharing limit.Comment: 14 pages, 4 figure
    • …
    corecore