8,793 research outputs found

    Local Approximation Schemes for Ad Hoc and Sensor Networks

    Get PDF
    We present two local approaches that yield polynomial-time approximation schemes (PTAS) for the Maximum Independent Set and Minimum Dominating Set problem in unit disk graphs. The algorithms run locally in each node and compute a (1+ε)-approximation to the problems at hand for any given ε > 0. The time complexity of both algorithms is O(TMIS + log*! n/εO(1)), where TMIS is the time required to compute a maximal independent set in the graph, and n denotes the number of nodes. We then extend these results to a more general class of graphs in which the maximum number of pair-wise independent nodes in every r-neighborhood is at most polynomial in r. Such graphs of polynomially bounded growth are introduced as a more realistic model for wireless networks and they generalize existing models, such as unit disk graphs or coverage area graphs

    Local Multicoloring Algorithms: Computing a Nearly-Optimal TDMA Schedule in Constant Time

    Get PDF
    The described multicoloring problem has direct applications in the context of wireless ad hoc and sensor networks. In order to coordinate the access to the shared wireless medium, the nodes of such a network need to employ some medium access control (MAC) protocol. Typical MAC protocols control the access to the shared channel by time (TDMA), frequency (FDMA), or code division multiple access (CDMA) schemes. Many channel access schemes assign a fixed set of time slots, frequencies, or (orthogonal) codes to the nodes of a network such that nodes that interfere with each other receive disjoint sets of time slots, frequencies, or code sets. Finding a valid assignment of time slots, frequencies, or codes hence directly corresponds to computing a multicoloring of a graph GG. The scarcity of bandwidth, energy, and computing resources in ad hoc and sensor networks, as well as the often highly dynamic nature of these networks require that the multicoloring can be computed based on as little and as local information as possible

    Self-stabilizing algorithms for Connected Vertex Cover and Clique decomposition problems

    Full text link
    In many wireless networks, there is no fixed physical backbone nor centralized network management. The nodes of such a network have to self-organize in order to maintain a virtual backbone used to route messages. Moreover, any node of the network can be a priori at the origin of a malicious attack. Thus, in one hand the backbone must be fault-tolerant and in other hand it can be useful to monitor all network communications to identify an attack as soon as possible. We are interested in the minimum \emph{Connected Vertex Cover} problem, a generalization of the classical minimum Vertex Cover problem, which allows to obtain a connected backbone. Recently, Delbot et al.~\cite{DelbotLP13} proposed a new centralized algorithm with a constant approximation ratio of 22 for this problem. In this paper, we propose a distributed and self-stabilizing version of their algorithm with the same approximation guarantee. To the best knowledge of the authors, it is the first distributed and fault-tolerant algorithm for this problem. The approach followed to solve the considered problem is based on the construction of a connected minimal clique partition. Therefore, we also design the first distributed self-stabilizing algorithm for this problem, which is of independent interest

    Distributed Symmetry Breaking in Hypergraphs

    Full text link
    Fundamental local symmetry breaking problems such as Maximal Independent Set (MIS) and coloring have been recognized as important by the community, and studied extensively in (standard) graphs. In particular, fast (i.e., logarithmic run time) randomized algorithms are well-established for MIS and Δ+1\Delta +1-coloring in both the LOCAL and CONGEST distributed computing models. On the other hand, comparatively much less is known on the complexity of distributed symmetry breaking in {\em hypergraphs}. In particular, a key question is whether a fast (randomized) algorithm for MIS exists for hypergraphs. In this paper, we study the distributed complexity of symmetry breaking in hypergraphs by presenting distributed randomized algorithms for a variety of fundamental problems under a natural distributed computing model for hypergraphs. We first show that MIS in hypergraphs (of arbitrary dimension) can be solved in O(log2n)O(\log^2 n) rounds (nn is the number of nodes of the hypergraph) in the LOCAL model. We then present a key result of this paper --- an O(Δϵpolylog(n))O(\Delta^{\epsilon}\text{polylog}(n))-round hypergraph MIS algorithm in the CONGEST model where Δ\Delta is the maximum node degree of the hypergraph and ϵ>0\epsilon > 0 is any arbitrarily small constant. To demonstrate the usefulness of hypergraph MIS, we present applications of our hypergraph algorithm to solving problems in (standard) graphs. In particular, the hypergraph MIS yields fast distributed algorithms for the {\em balanced minimal dominating set} problem (left open in Harris et al. [ICALP 2013]) and the {\em minimal connected dominating set problem}. We also present distributed algorithms for coloring, maximal matching, and maximal clique in hypergraphs.Comment: Changes from the previous version: More references adde

    Networked Computing in Wireless Sensor Networks for Structural Health Monitoring

    Full text link
    This paper studies the problem of distributed computation over a network of wireless sensors. While this problem applies to many emerging applications, to keep our discussion concrete we will focus on sensor networks used for structural health monitoring. Within this context, the heaviest computation is to determine the singular value decomposition (SVD) to extract mode shapes (eigenvectors) of a structure. Compared to collecting raw vibration data and performing SVD at a central location, computing SVD within the network can result in significantly lower energy consumption and delay. Using recent results on decomposing SVD, a well-known centralized operation, into components, we seek to determine a near-optimal communication structure that enables the distribution of this computation and the reassembly of the final results, with the objective of minimizing energy consumption subject to a computational delay constraint. We show that this reduces to a generalized clustering problem; a cluster forms a unit on which a component of the overall computation is performed. We establish that this problem is NP-hard. By relaxing the delay constraint, we derive a lower bound to this problem. We then propose an integer linear program (ILP) to solve the constrained problem exactly as well as an approximate algorithm with a proven approximation ratio. We further present a distributed version of the approximate algorithm. We present both simulation and experimentation results to demonstrate the effectiveness of these algorithms
    corecore