2,767 research outputs found

    Using a Cray Y-MP as an array processor for a RISC Workstation

    Get PDF
    As microprocessors increase in power, the economics of centralized computing has changed dramatically. At the beginning of the 1980's, mainframes and super computers were often considered to be cost-effective machines for scalar computing. Today, microprocessor-based RISC (reduced-instruction-set computer) systems have displaced many uses of mainframes and supercomputers. Supercomputers are still cost competitive when processing jobs that require both large memory size and high memory bandwidth. One such application is array processing. Certain numerical operations are appropriate to use in a Remote Procedure Call (RPC)-based environment. Matrix multiplication is an example of an operation that can have a sufficient number of arithmetic operations to amortize the cost of an RPC call. An experiment which demonstrates that matrix multiplication can be executed remotely on a large system to speed the execution over that experienced on a workstation is described

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    The development of a multi-layer architecture for image processing

    Get PDF
    The extraction of useful information from an image involves a series of operations, which can be functionally divided into low-level, intermediate-level and high- level processing. Because different amounts of computing power may be demanded by each level, a system which can simultaneously carry out operations at different levels is desirable. A multi-layer system which embodies both functional and spatial parallelism is envisioned. This thesis describes the development of a three-layer architecture which is designed to tackle vision problems embodying operations in each processing level. A survey of various multi-layer and multi-processor systems is carried out and a set of guidelines for the design of a multi-layer image processing system is established. The linear array is proposed as a possible basis for multi-layer systems and a significant part of the thesis is concerned with a study of this structure. The CLIP7A system, which is a linear array with 256 processing elements, is examined in depth. The CLIP7A system operates under SIMD control, enhanced by local autonomy. In order to examine the possible benefits of this arrangement, image processing algorithms which exploit the autonomous functions are implemented. Additionally, the structural properties of linear arrays are also studied. Information regarding typical computing requirements in each layer and the communication networks between elements in different layers is obtained by applying the CLIP7A system to solve an integrated vision problem. From the results obtained, a three layer architecture is proposed. The system has 256, 16 and 4 processing elements in the low, intermediate and high level layer respectively. The processing elements will employ a 16-bit microprocessor as the computing unit, which is selected from off-the-shelf components. Communication between elements in consecutive layers is via two different networks, which are designed so that efficient data transfer is achieved. Additionally, the networks enable the system to maintain fault tolerance and to permit expansion in the second and third layers

    Serial-data computation in VLSI

    Get PDF

    On the efficient parallel computation of Legendre transforms

    Get PDF
    In this article, we discuss a parallel implementation of efficient algorithms for computation of Legendre polynomial transforms and other orthogonal polynomial transforms. We develop an approach to the Driscoll-Healy algorithm using polynomial arithmetic and present experimental results on the accuracy, efficiency, and scalability of our implementation. The algorithms were implemented in ANSI C using the BSPlib communications library. We also present a new algorithm for computing the cosine transform of two vectors at the same time
    corecore