7,170 research outputs found

    Locally weighted learning: How and when does it work in Bayesian networks?

    Full text link
    Ā© 2016, Taylor and Francis Ltd. All rights reserved. Bayesian network (BN), a simple graphical notation for conditional independence assertions, is promised to represent the probabilistic relationships between diseases and symptoms. Learning the structure of a Bayesian network classifier (BNC) encodes conditional independence assumption between attributes, which may deteriorate the classification performance. One major approach to mitigate the BNCā€™s primary weakness (the attributes independence assumption) is the locally weighted approach. And this type of approach has been proved to achieve good performance for naive Bayes, a BNC with simple structure. However, we do not know whether or how effective it works for improving the performance of the complex BNC. In this paper, we first do a survey on the complex structure models for BNCs and their improvements, then carry out a systematically experimental analysis to investigate the effectiveness of locally weighted method for complex BNCs, e.g., tree-augmented naive Bayes (TAN), averaged one-dependence estimators AODE and hidden naive Bayes (HNB), measured by classification accuracy (ACC) and the area under the ROC curve ranking (AUC). Experiments and comparisons on 36 benchmark data sets collected from University of California, Irvine (UCI) in Weka system demonstrate that locally weighting technologies just slightly outperforms unweighted complex BNCs on ACC and AUC. In other words, although locally weighting could significantly improve the performance of NB (a BNC with simple structure), it could not work well on BNCs with complex structures. This is because the performance improvements of BNCs are attributed to their structures not the locally weighting

    A Decision tree-based attribute weighting filter for naive Bayes

    Get PDF
    The naive Bayes classifier continues to be a popular learning algorithm for data mining applications due to its simplicity and linear run-time. Many enhancements to the basic algorithm have been proposed to help mitigate its primary weakness--the assumption that attributes are independent given the class. All of them improve the performance of naĆÆve Bayes at the expense (to a greater or lesser degree) of execution time and/or simplicity of the final model. In this paper we present a simple filter method for setting attribute weights for use with naive Bayes. Experimental results show that naive Bayes with attribute weights rarely degrades the quality of the model compared to standard naive Bayes and, in many cases, improves it dramatically. The main advantages of this method compared to other approaches for improving naive Bayes is its run-time complexity and the fact that it maintains the simplicity of the final model

    Minimum information loss fusion in distributed sensor networks

    Get PDF
    A key assumption of distributed data fusion is that individual nodes have no knowledge of the global network topology and use only information which is available locally. This paper considers the weighted exponential product (WEP) rule as a methodology for conservatively fusing estimates with an unknown degree of correlation between them. We provide a preliminary investigation into how the methodology for selecting the mixing parameter can be used to minimize the information loss in the fused covariance as opposed to reducing the Shannon entropy, and hence maximize the information of the fused covariance. Our results suggest that selecting a mixing parameter which minimizes the information loss ensures that information which is exclusive to the estimates from one source is not lost during the fusion process. These results indicate that minimizing the information loss provides a robust technique for selecting the mixing parameter in WEP fusion

    HOL(y)Hammer: Online ATP Service for HOL Light

    Full text link
    HOL(y)Hammer is an online AI/ATP service for formal (computer-understandable) mathematics encoded in the HOL Light system. The service allows its users to upload and automatically process an arbitrary formal development (project) based on HOL Light, and to attack arbitrary conjectures that use the concepts defined in some of the uploaded projects. For that, the service uses several automated reasoning systems combined with several premise selection methods trained on all the project proofs. The projects that are readily available on the server for such query answering include the recent versions of the Flyspeck, Multivariate Analysis and Complex Analysis libraries. The service runs on a 48-CPU server, currently employing in parallel for each task 7 AI/ATP combinations and 4 decision procedures that contribute to its overall performance. The system is also available for local installation by interested users, who can customize it for their own proof development. An Emacs interface allowing parallel asynchronous queries to the service is also provided. The overall structure of the service is outlined, problems that arise and their solutions are discussed, and an initial account of using the system is given

    Weka: A machine learning workbench for data mining

    Get PDF
    The Weka workbench is an organized collection of state-of-the-art machine learning algorithms and data preprocessing tools. The basic way of interacting with these methods is by invoking them from the command line. However, convenient interactive graphical user interfaces are provided for data exploration, for setting up large-scale experiments on distributed computing platforms, and for designing configurations for streamed data processing. These interfaces constitute an advanced environment for experimental data mining. The system is written in Java and distributed under the terms of the GNU General Public License
    • ā€¦
    corecore