772 research outputs found

    Localizing Pain Matrix and Theory of Mind networks with both verbal and non-verbal stimuli

    Get PDF
    Functional localizer tasks allow researchers to identify brain regions in each individual's brain, using a combination of anatomical and functional constraints. In this study, we compare three social cognitive localizer tasks, designed to efficiently identify regions in the "Pain Matrix," recruited in response to a person's physical pain, and the "Theory of Mind network," recruited in response to a person's mental states (i.e. beliefs and emotions). Participants performed three tasks: first, the verbal false-belief stories task; second, a verbal task including stories describing physical pain versus emotional suffering; and third, passively viewing a non-verbal animated movie, which included segments depicting physical pain and beliefs and emotions. All three localizers were efficient in identifying replicable, stable networks in individual subjects. The consistency across tasks makes all three tasks viable localizers. Nevertheless, there were small reliable differences in the location of the regions and the pattern of activity within regions, hinting at more specific representations. The new localizers go beyond those currently available: first, they simultaneously identify two functional networks with no additional scan time, and second, the non-verbal task extends the populations in whom functional localizers can be applied. These localizers will be made publicly available.National Institutes of Health (U.S.) (Grant 1R01 MH096914-01A1

    Development of brain networks for social functions:Confirmatory analyses in a large open source dataset

    Get PDF
    Human observers show robust activity in distinct brain networks during movie-viewing. For example, scenes that emphasize characters’ thoughts evoke activity in the “Theory of Mind” (ToM) network, whereas scenes that emphasize characters’ bodily sensations evoke activity in the “Pain Matrix.” A prior exploratory fMRI study used a naturalistic movie-viewing stimulus to study the developmental origins of this functional dissociation, and the links between cortical and cognitive changes in children’s social development (Richardson et al., 2018). To replicate and extend this work, the current study utilized a large publicly available dataset (n = 241, ages 5–20 years) (Alexander et al., 2017) who viewed “The Present” (Frey, 2014) and completed a resting state scan (n = 200) while undergoing fMRI. This study provides confirmatory evidence that 1) ToM and pain networks are functionally dissociated early in development, 2) selectivity increases with age, and in ToM regions, with a behavioral index of social reasoning. Additionally, while inter-region correlations are similar when measured during the movie and at rest, only inter-region correlations measured during movie-viewing correlated with functional maturity. This study demonstrates the scientific benefits of open source data in developmental cognitive neuroscience, and provides insight into the relationship between functional and intrinsic properties of the developing brain. Keywords: Theory of mind, Functional connectivity, Resting state, Development, fMRI, Open source dat

    Developing a Theory of Mind : insights from FMRI studies of children

    Get PDF
    Thesis: Ph. D. in Neuroscience, Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, 2018.Cataloged from PDF version of thesis.Includes bibliographical references.Social cognitive abilities undergo drastic changes throughout childhood. Theory of mind (ToM), the ability to reason about the mental states of others, is a core social cognitive ability that is crucial for navigating the social world. A majority of prior fMRI research on ToM has characterized the functional response in brain regions that are preferentially recruited to reason about the minds of others in adults. By contrast, a majority of prior developmental research on ToM has used behavioral methods to describe milestones in theory of mind acquisition in early childhood. The experiments described in this thesis draw heavily from these two approaches, in order to link them: what is the relationship between the development of functionally selective responses in ToM brain regions, and developmental changes in ToM reasoning in childhood? Chapter 1 describes two longitudinal fMRI experiments that test for developmental change and stable individual differences in neural and behavioral measures of ToM, and for predictive relationships between the two measures. Chapter 2 describes a large, cross-sectional study that measures the development of the cortical dissociation between brain regions that process minds (the ToM network) and those that process bodies (the Pain Matrix). Chapter 2 additionally provides insight into the neural correlates of passing the false-belief task - the best known developmental milestone in ToM reasoning. Chapter 3 uses a publicly available dataset in order to provide confirmatory evidence for the results described in Chapter 2, and clarifies the relationship between stimulus-driven functional responses, and inter-region correlations within and between ToM and pain brain regions. Chapter 4 characterizes ToM development, neurally and behaviorally, in children who have experienced delayed access to sign language. Finally, Chapter 5 provides a discussion of challenges and strategies in developmental cognitive neuroscience research. This interdisciplinary thesis has three broad goals: 1) to characterize kinds of neural change that support and/or predict behavioral improvements in theory of mind, 2) to gain novel insight into the nature of specific behavioral milestones in social reasoning, and 3) to better understand the impact of experience (e.g., linguistic input) on ToM development, behaviorally and neurally.by Hilary L. Richardson.Ph. D. in Neuroscienc

    Tracking the cognitive, social, and neuroanatomical profile in early neurodegeneration: Type III Cockayne syndrome

    Get PDF
    Cockayne syndrome (CS) is an autosomal recessive disease associated with premature aging, progressive multiorgan degeneration, and nervous system abnormalities including cerebral and cerebellar atrophy, brain calcifications, and white matter abnormalities. Although several clinical descriptions of CS patients have reported developmental delay and cognitive impairment with relative preservation of social skills, no previous studies have carried out a comprehensive neuropsychological and social cognition assessment. Furthermore, no previous research in individuals with CS has examined the relationship between brain atrophy and performance on neuropsychological and social cognition tests. This study describes the case of an atypical late-onset type III CS patient who exceeds the mean life expectancy of individuals with this pathology. The patient and a group of healthy controls underwent a comprehensive assessment that included multiple neuropsychological and social cognition (emotion recognition, theory of mind, and empathy) tasks. In addition, we compared the pattern of atrophy in the patient to controls and to its concordance with ERCC8 gene expression in a healthy brain. The results showed memory, language, and executive deficits that contrast with the relative preservation of social cognition skills. The cognitive profile of the patient was consistent with his pattern of global cerebral and cerebellar loss of gray matter volume (frontal structures, bilateral cerebellum, basal ganglia, temporal lobe, and occipito-temporal/occipito-parietal regions), which in turn was anatomically consistent with the ERCC8 gene expression level in a healthy donor's brain. The study of exceptional cases, such as the one described here, is fundamental to elucidating the processes that affect the brain in premature aging diseases, and such studies provide an important source of information for understanding the problems associated with normal and pathological aging.Fil: Båez Buitrago, Sandra Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Diego Portales; Chile. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina. Universidad Favaloro; Argentina. Instituto de Neurología Cognitiva; ArgentinaFil: Couto, Juan Blas Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Favaloro; Argentina. Instituto de Neurología Cognitiva; ArgentinaFil: Herrera, Eduar. Universidad Autónoma del Caribe; ColombiaFil: Bocanegra, Yamile. Universidad de Antioquia; Colombia. Universidad de San Buenaventura; ColombiaFil: Trujillo Orrego, Natalia. Universidad de Antioquia; ColombiaFil: Madriga Zapata, Lucia. Universidad de Antioquia; ColombiaFil: Cardona Londoño, Juan Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Favaloro; Argentina. Instituto de Neurología Cognitiva; ArgentinaFil: Manes, Facundo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Australian Government, Australian Research Council; Australia. Universidad Diego Portales; Chile. Universidad Favaloro; Argentina. Instituto de Neurología Cognitiva; ArgentinaFil: Ibåñez Barassi, Agustín Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Diego Portales; Chile. Universidad Favaloro; Argentina. Instituto de Neurología Cognitiva; ArgentinaFil: Villegas, Andres. Universidad de Antioquia; Colombi

    Development of the social brain from age three to twelve years

    Get PDF
    Human adults recruit distinct networks of brain regions to think about the bodies and minds of others. This study characterizes the development of these networks, and tests for relationships between neural development and behavioral changes in reasoning about others' minds ('theory of mind', ToM). A large sample of children (n = 122, 3-12 years), and adults (n = 33), watched a short movie while undergoing fMRI. The movie highlights the characters' bodily sensations (often pain) and mental states (beliefs, desires, emotions), and is a feasible experiment for young children. Here we report three main findings: (1) ToM and pain networks are functionally distinct by age 3 years, (2) functional specialization increases throughout childhood, and (3) functional maturity of each network is related to increasingly anti-correlated responses between the networks. Furthermore, the most studied milestone in ToM development, passing explicit false-belief tasks, does not correspond to discontinuities in the development of the social brain.National Science Foundation (U.S.) (Award 1122374)National Science Foundation (U.S.) (Award 095518)National Institutes of Health (U.S.) (Award R01-MH096914-05

    Frontotemporal dementia, music perception and social cognition share neurobiological circuits:A meta-analysis

    Get PDF
    Frontotemporal dementia (FTD) is a neurodegenerative disease that presents with profound changes in social cognition. Music might be a sensitive probe for social cognition abilities, but underlying neurobiological substrates are unclear. We performed a meta-analysis of voxel-based morphometry studies in FTD patients and functional MRI studies for music perception and social cognition tasks in cognitively normal controls to identify robust patterns of atrophy (FTD) or activation (music perception or social cognition). Conjunction analyses were performed to identify overlapping brain regions. In total 303 articles were included: 53 for FTD (n = 1153 patients, 42.5% female; 1337 controls, 53.8% female), 28 for music perception (n = 540, 51.8% female) and 222 for social cognition in controls (n = 5664, 50.2% female). We observed considerable overlap in atrophy patterns associated with FTD, and functional activation associated with music perception and social cognition, mostly encompassing the ventral language network. We further observed overlap across all three modalities in mesolimbic, basal forebrain and striatal regions. The results of our meta-analysis suggest that music perception and social cognition share neurobiological circuits that are affected in FTD. This supports the idea that music might be a sensitive probe for social cognition abilities with implications for diagnosis and monitoring

    The Role of the Ventrolateral Anterior Temporal Lobes in Social Cognition

    Get PDF
    A key challenge for neurobiological models of social cognition is to elucidate whether brain regions are specialised for that domain. In recent years, discussion surrounding the role of anterior temporal regions epitomises such debates; some argue the anterior temporal lobe (ATL) is part of a domain‐specific network for social processing, while others claim it comprises a domain‐general hub for semantic representation. In the present study, we used ATL‐optimised fMRI to map the contribution of different ATL structures to a variety of paradigms frequently used to probe a crucial social ability, namely ‘theory of mind’ (ToM). Using multiple tasks enables a clearer attribution of activation to ToM as opposed to idiosyncratic features of stimuli. Further, we directly explored whether these same structures are also activated by a non‐social task probing semantic representations. We revealed that common to all of the tasks was activation of a key ventrolateral ATL region that is often invisible to standard fMRI. This constitutes novel evidence in support of the view that the ventrolateral ATL contributes to social cognition via a domain‐general role in semantic processing and against claims of a specialised social function

    Reduced neural selectivity for mental states in deaf children with delayed exposure to sign language

    Get PDF
    Early linguistic experience directly facilitates social development in childhood. Here, the authors reveal that children with delayed access to language show delayed development of selective responses in cortical regions involved in thinking about others’ thoughts
    • 

    corecore