624 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationDevice-free localization (DFL) and tracking services are important components in security, emergency response, home and building automation, and assisted living applications where an action is taken based on a person's location. In this dissertation, we develop new methods and models to enable and improve DFL in a variety of radio frequency sensor network configurations. In the first contribution of this work, we develop a linear regression and line stabbing method which use a history of line crossing measurements to estimate the track of a person walking through a wireless network. Our methods provide an alternative approach to DFL in wireless networks where the number of nodes that can communicate with each other in a wireless network is limited and traditional DFL methods are ill-suited. We then present new methods that enable through-wall DFL when nodes in the network are in motion. We demonstrate that we can detect when a person crosses between ultra-wideband radios in motion based on changes in the energy contained in the first few nanoseconds of a measured channel impulse response. Through experimental testing, we show how our methods can localize a person through walls with transceivers in motion. Next, we develop new algorithms to localize boundary crossings when a person crosses between multiple nodes simultaneously. We experimentally evaluate our algorithms with received signal strength (RSS) measurements collected from a row of radio frequency (RF) nodes placed along a boundary and show that our algorithms achieve orders of magnitude better localization classification than baseline DFL methods. We then present a way to improve the models used in through-wall radio tomographic imaging with E-shaped patch antennas we develop and fabricate which remain tuned even when placed against a dielectric. Through experimentation, we demonstrate the E-shaped patch antennas lower localization error by 44% compared with omnidirectional and microstrip patch antennas. In our final contribution, we develop a new mixture model that relates a link's RSS as a function of a person's location in a wireless network. We develop new localization methods that compute the probabilities of a person occupying a location based on our mixture model. Our methods continuously recalibrate the model to achieve a low localization error even in changing environments

    Wireless Sensor Network Optimization for Radio Tomographic Imaging

    Get PDF
    Radio tomographic imaging (RTI) is a form of device-free, passive localization (DFPL) that uses a wireless sensor network (WSN) typically made up of affordable, low-power transceivers. The intent for RTI is to have the ability to monitor a given area, localizing and tracking obstructions within. The specific advantages rendered by RTI include the ability to provide imaging, localization, and tracking where other well developed methods like optical surveillance fall short. RTI can function through optical obstructions such as smoke and even physical obstructions like walls. This provides a tool that is particularly valuable for tactical operations like emergency response and military operations in urban terrain (MOUT). Many methods to optimize the performance of RTI systems have been explored, but little work that focuses on the sequence of transceiver reports can be found in the body of literature. This thesis provides an exploration of the effects from attempting to optimize the transmission sequence in a WSN by creating a metric to quantify the value of the information a transceiver will report and using it to develop a dynamic, utility-driven, token passing process. After deriving a metric from the Fisher information matrix of the imaging solution, it was combined with a weighting based on the time each node last reported across the WSN. Modeling and simulation was performed to determine if the novel transmission sequence provided any benefit to the localization and tracking performance. The results showed a small improvement in two different localization methods when packet loss in the WSN reached 50%. These results provide a proof-of-concept that warrants further exploration and suggest that performance improvements may be realized by implementing a transmission sequence based on the metric developed in this thesis

    Localization Services for Online Common Operational Picture and Situation Awareness

    Get PDF
    Many operations, be they military, police, rescue, or other field operations, require localization services and online situation awareness to make them effective. Questions such as how many people are inside a building and their locations are essential. In this paper, an online localization and situation awareness system is presented, called Mobile Urban Situation Awareness System (MUSAS), for gathering and maintaining localization information, to form a common operational picture. The MUSAS provides multiple localization services, as well as visualization of other sensor data, in a common frame of reference. The information and common operational picture of the system is conveyed to all parties involved in the operation, the field team, and people in the command post. In this paper, a general system architecture for enabling localization based situation awareness is designed and the MUSAS system solution is presented. The developed subsystem components and forming of the common operational picture are summarized, and the future potential of the system for various scenarios is discussed. In the demonstration, the MUSAS is deployed to an unknown building, in an ad hoc fashion, to provide situation awareness in an urban indoor military operation.Peer reviewe

    Measurement-based feasibility exploration on detecting and localizing multiple humans using MIMO radio channel properties

    Get PDF
    This paper explores the feasibility of using the multiple-input multiple-output (MIMO) radio channel properties to passively detect and localize multiple humans in indoor environments. We propose to utilize the unique reverberation characteristics of indoor channels for the purpose of detecting, and the power angular delay profile (PADP) for localizing humans. On the one hand, the reverberation time corresponds with the decay rate of multipath in a closed or partially closed cavity, and varies with the change of the number of humans or the moving of humans relative to the antennas at link ends. On the other hand, the PADP is proposed to be calculated by the Multiple Signal Classification (MUSIC) super resolution algorithm with frequency smoothing preprocessing. The proposed approach is evaluated based on real-world MIMO radio channel measurements obtained from a meeting room. Measurements with and without the presence of humans have been conducted, where the maximum number of humans considered is four. Humans facing different directions, either in parallel or orthogonal to the direct line between the transmit and the receive antennas have been taken into account. In term of the detection feasibility, it is found that the change of the number of humans as well as the change of their facing/moving directions inside the partial reverberant region can be reflected on the change of the reverberation time estimated from the power delay profile of channel. In term of the localization feasibility, it is found that single human location can be well associated to the peak of the variation of the PADP during his/her movement, while multiple humans' movements result in obvious power variation in the very vicinity of some of them, and also in the vicinity of some background objects that is far from target humans

    Doctor of Philosophy

    Get PDF
    dissertationThe wireless radio channel is typically thought of as a means to move information from transmitter to receiver, but the radio channel can also be used to detect changes in the environment of the radio link. This dissertation is focused on the measurements we can make at the physical layer of wireless networks, and how we can use those measurements to obtain information about the locations of transceivers and people. The first contribution of this work is the development and testing of an open source, 802.11b sounder and receiver, which is capable of decoding packets and using them to estimate the channel impulse response (CIR) of a radio link at a fraction of the cost of traditional channel sounders. This receiver improves on previous implementations by performing optimized matched filtering on the field-programmable gate array (FPGA) of the Universal Software Radio Peripheral (USRP), allowing it to operate at full bandwidth. The second contribution of this work is an extensive experimental evaluation of a technology called location distinction, i.e., the ability to identify changes in radio transceiver position, via CIR measurements. Previous location distinction work has focused on single-input single-output (SISO) radio links. We extend this work to the context of multiple-input multiple-output (MIMO) radio links, and study system design trade-offs which affect the performance of MIMO location distinction. The third contribution of this work introduces the "exploiting radio windows" (ERW) attack, in which an attacker outside of a building surreptitiously uses the transmissions of an otherwise secure wireless network inside of the building to infer location information about people inside the building. This is possible because of the relative transparency of external walls to radio transmissions. The final contribution of this dissertation is a feasibility study for building a rapidly deployable radio tomographic (RTI) imaging system for special operations forces (SOF). We show that it is possible to obtain valuable tracking information using as few as 10 radios over a single floor of a typical suburban home, even without precise radio location measurements

    Estimating Single and Multiple Target Locations Using K-Means Clustering with Radio Tomographic Imaging in Wireless Sensor Networks

    Get PDF
    Geolocation involves using data from a sensor network to assess and estimate the location of a moving or stationary target. Received Signal Strength (RSS), Angle of Arrival (AoA), and/or Time Difference of Arrival (TDoA) measurements can be used to estimate target location in sensor networks. Radio Tomographic Imaging (RTI) is an emerging Device-Free Localization (DFL) concept that utilizes the RSS values of a Wireless Sensor Network (WSN) to geolocate stationary or moving target(s). The WSN is set up around the Area of Interest (AoI) and the target of interest, which can be a person or object. The target inside the AoI creates a shadowing loss between each link being obstructed by the target. This research focuses on position estimation of single and multiple targets inside a RTI network. This research applies K-means clustering to localize one or more targets. K-means clustering is an algorithm that has been used in data mining applications such as machine learning applications, pattern recognition, hyper-spectral imagery, artificial intelligence, crowd analysis, and Multiple Target Tracking (MTT)
    • …
    corecore