256 research outputs found

    Characterization, Classification, and Genesis of Seismocardiographic Signals

    Get PDF
    Seismocardiographic (SCG) signals are the acoustic and vibration induced by cardiac activity measured non-invasively at the chest surface. These signals may offer a method for diagnosing and monitoring heart function. Successful classification of SCG signals in health and disease depends on accurate signal characterization and feature extraction. In this study, SCG signal features were extracted in the time, frequency, and time-frequency domains. Different methods for estimating time-frequency features of SCG were investigated. Results suggested that the polynomial chirplet transform outperformed wavelet and short time Fourier transforms. Many factors may contribute to increasing intrasubject SCG variability including subject posture and respiratory phase. In this study, the effect of respiration on SCG signal variability was investigated. Results suggested that SCG waveforms can vary with lung volume, respiratory flow direction, or a combination of these criteria. SCG events were classified into groups belonging to these different respiration phases using classifiers, including artificial neural networks, support vector machines, and random forest. Categorizing SCG events into different groups containing similar events allows more accurate estimation of SCG features. SCG feature points were also identified from simultaneous measurements of SCG and other well-known physiologic signals including electrocardiography, phonocardiography, and echocardiography. Future work may use this information to get more insights into the genesis of SCG

    Algorithm for real-time analysis of intracoronary electrocardiogram.

    Get PDF
    Introduction Since its first implementation in 1985, intracoronary (ic) electrocardiogram (ECG) has shown ample evidence for its diagnostic value given the higher sensitivity for myocardial ischemia detection in comparison to surface ECG. However, a lack of online systems to quantitatively analyze icECG in real-time prevents its routine use. The present study aimed to develop and validate an autonomous icECG analyzing algorithm. Materials and methods This is a retrospective observational study in 100 patients with chronic coronary syndrome. From each patient, a non-ischemic as well as ischemic icECG at the end of a 1-min proximal coronary balloon occlusion was available. An ECG expert as well as the newly developed algorithm for autonomous icECG analysis measured the icECG ST-segment shift in mV for each icECG tracing. Results Intraclass correlation coefficient (ICC) demonstrated low variability between the two methods (ICC = 0.968). Using the time point of icECG recording as allocation reference for absent or present myocardial ischemia, ROC-analysis for ischemia detection by the manually determined icECG ST-segment shift showed an area under the curve (AUC) of 0.968 ± 0.021 (p < 0.0001). AUC for the algorithm analysis was 0.967 ± 0.023 (p < 0.0001; p = 0.925 for the difference between the ROC curve AUCs). Time to complete analysis was below 1,000 ms for the autonomous icECG analysis and above 5 min for manual analysis. Conclusion A newly developed autonomous icECG analysing algorithm detects myocardial ischemia with equal accuracy as manual ST-segment shift assessment. The algorithm provides the technical fundament for an analysing system to quantitatively obtain icECG in real-time

    The Application of Computer Techniques to ECG Interpretation

    Get PDF
    This book presents some of the latest available information on automated ECG analysis written by many of the leading researchers in the field. It contains a historical introduction, an outline of the latest international standards for signal processing and communications and then an exciting variety of studies on electrophysiological modelling, ECG Imaging, artificial intelligence applied to resting and ambulatory ECGs, body surface mapping, big data in ECG based prediction, enhanced reliability of patient monitoring, and atrial abnormalities on the ECG. It provides an extremely valuable contribution to the field

    Personalized noninvasive imaging of volumetric cardiac electrophysiology

    Get PDF
    Three-dimensionally distributed electrical functioning is the trigger of mechanical contraction of the heart. Disturbance of this electrical flow is known to predispose to mechanical catastrophe but, due to its amenability to certain intervention techniques, a detailed understanding of subject-specific cardiac electrophysiological conditions is of great medical interest. In current clinical practice, body surface potential recording is the standard tool for diagnosing cardiac electrical dysfunctions. However, successful treatments normally require invasive catheter mapping for a more detailed observation of these dysfunctions. In this dissertation, we take a system approach to pursue personalized noninvasive imaging of volumetric cardiac electrophysiology. Under the guidance of existing scientific knowledge of the cardiac electrophysiological system, we extract the subject specific cardiac electrical information from noninvasive body surface potential mapping and tomographic imaging data of individual subjects. In this way, a priori knowledge of system physiology leads the physiologically meaningful interpretation of personal data; at the same time, subject-specific information contained in the data identifies parameters in individual systems that differ from prior knowledge. Based on this perspective, we develop a physiological model-constrained statistical framework for the quantitative reconstruction of the electrical dynamics and inherent electrophysiological property of each individual cardiac system. To accomplish this, we first develop a coupled meshfree-BE (boundary element) modeling approach to represent existing physiological knowledge of the cardiac electrophysiological system on personalized heart-torso structures. Through a state space system approach and sequential data assimilation techniques, we then develop statistical model-data coupling algorithms for quantitative reconstruction of volumetric transmembrane potential dynamics and tissue property of 3D myocardium from body surface potential recoding of individual subjects. We also introduce a data integration component to build personalized cardiac electrophysiology by fusing tomographic image and BSP sequence of the same subject. In addition, we develop a computational reduction strategy that improves the efficiency and stability of the framework. Phantom experiments and real-data human studies are performed for validating each of the framework’s major components. These experiments demonstrate the potential of our framework in providing quantitative understanding of volumetric cardiac electrophysiology for individual subjects and in identifying latent threats in individual’s heart. This may aid in personalized diagnose, treatment planning, and fundamentally, prevention of fatal cardiac arrhythmia

    Advances in Digital Processing of Low-Amplitude Components of Electrocardiosignals

    Get PDF
    This manual has been published within the framework of the BME-ENA project under the responsibility of National Technical University of Ukraine. The BME-ENA “Biomedical Engineering Education Tempus Initiative in Eastern Neighbouring Area”, Project Number: 543904-TEMPUS-1-2013-1-GR-TEMPUS-JPCR is a Joint Project within the TEMPUS IV program. This project has been funded with support from the European Commission.Навчальний посібник присвячено розробці методів та засобів для неінвазивного виявлення та дослідження тонких проявів електричної активності серця. Особлива увага приділяється вдосконаленню інформаційного та алгоритмічного забезпечення систем електрокардіографії високого розрізнення для ранньої діагностики електричної нестабільності міокарда, а також для оцінки функціонального стану плоду під час вагітності. Теоретичні основи супроводжуються прикладами реалізації алгоритмів за допомогою системи MATLAB. Навчальний посібник призначений для студентів, аспірантів, а також фахівців у галузі біомедичної електроніки та медичних працівників.The teaching book is devoted to development and research of methods and tools for non-invasive detection of subtle manifistations of heart electrical activity. Particular attention is paid to the improvement of information and algorithmic support of high resolution electrocardiography for early diagnosis of myocardial electrical instability, as well as for the evaluation of the functional state of the fetus during pregnancy examination. The theoretical basis accompanied by the examples of implementation of the discussed algorithms with the help of MATLAB. The teaching book is intended for students, graduate students, as well as specialists in the field of biomedical electronics and medical professionals

    Biometric authentication and identification through electrocardiogram signals

    Get PDF
    Tese de Mestrado Integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica), 2021, Universidade de Lisboa, Faculdade de CiênciasO reconhecimento biométrico tem sido alvo de diversas investigações ao longo dos anos, sendo a impressão digital, a face e a iris, os traços biométricos mais explorados. Apesar do seu elevado potencial no que diz respeito a possíveis aplicações tecnológicas, alguns estudos apresentam limitações a estes traços biométricos, nomeadamente a falta de fiabilidade e praticidade num sistema biométrico. Recentemente, vários estudos exploraram o potencial do uso do electrocardiograma (ECG) como traço biométrico, por ser único e singular para cada indivíduo, e dificilmente roubado por outrem, por ser um sinal fisiológico. Nesta dissertação, foi investigada a possibilidade de usar sinais ECG como traço biométrico para sistemas de identificação e autenticação biométrica. Para tal, recorreu-se a uma base de dados pública chamada Check Your Biosignals Here initiative (CYBHi), criada com o intuito de propiciar investigações biométricas. As sessões de aquisição contaram com 63 participantes e ocorreram em dois momentos distintos separados por três meses, numa modalidade “off-the-person”, com recurso a um elétrodo na palma da mão e eletrolicras nos dedos. Os sinais da primeira aquisição correspondem, num sistema biométrico, aos dados armazenados na base de dados, enquanto que os sinais da segunda aquisição correspondem aos dados que serão identificados ou autenticados pelo sistema. Os sistemas de identificação e autenticação biométrica propostos nesta dissertação incluem diferentes fases: o pré-processamento, o processamento e a classificação. O pré-processamento consistiu na aplicação de um filtro passa-banda IIR de 4ª ordem, para eliminar ruídos e artefactos provenientes de atividade muscular e da impedância elétrica dos aparelhos de aquisição. A fase de processamento consistiu em extrair e gerar os templates biométricos, que serão os inputs dos algoritmos de classificação. Primeiramente, extraíram-se os ciclos cardíacos através do Neurokit2 disponível no Python. Para tal, foram localizados os picos R dos sinais ECG e, posteriormente, estes foram segmentados em ciclos cardíacos, com 200 amostras antes e 400 amostras depois dos picos. Com o objetivo de remover os segmentos mais ruidosos, os ciclos cardíacos foram submetidos a um algoritmo de eliminação de segmentos que consistiu em encontrar, para cada sujeito, os 20 e 60 ciclos mais próximos entre si, designados de Set 1 e Set 2, respetivamente. A partir desses dois conjuntos de ciclos, criaram-se dois tipos de templates: 1) os ciclos cardíacos, e 2) escalogramas gerados a partir dos ciclos, através da transformada de wavelet contínua, com dois tamanhos distintos: 56x56 e 224x224, denominados por Size 56 e Size 224, respetivamente. Devido ao elevado tamanho dos escalogramas, foi utilizada a analise de componentes independentes para reduzir a dimensionalidade. Assim, os sistemas biométricos propostos na presente investigação, foram testados com os conjuntos de 20 e 60 templates, quer para ciclos quer para escalogramas, de forma a avaliar o desempenho do sistema quando usados mais ou menos templates para os processos de identificação e autenticação. Os templates foram também testados com e sem normalização, para que pudessem ser analisados os benefícios deste processo. A classificação foi feita através de diferentes métodos, testados numa modalidade “entre-sessões”, isto é, os dados da 2ª aquisição, considerados os dados de teste, foram comparados com os dados da 1ª aquisição, denominados dados de treino, de forma a serem classificados. Quanto ao sistema de identificação com ciclos cardíacos, foram testados diferentes classificadores, nomeadamente LDA, kNN, DT e SVM. Para o kNN e SVM, foi feita uma otimização para encontrar o valor de “k” e os valores de γ e C, respetivamente, que permitem o sistema alcançar o melhor desempenho possível. A melhor performance foi obtida através do LDA, alcançando uma taxa de identificação de 79,37% para a melhor configuração, isto é, usando 60 ciclos normalizados. Os templates com base em escalogramas foram testados como inputs para dois métodos distintos: 1) redes neuronais e 2) algoritmo baseado em distâncias. A melhor performance foi uma taxa de identificação de 69,84%, obtida quando usados 60 escalogramas de tamanho 224, não normalizados. Deste modo, os resultados relativos a identificação provaram que utilizar mais templates (60) para identificar um indivíduo otimiza a performance do sistema biométrico, independentemente do tipo de template utilizado. Para alem disto, a normalização mostrou-se um processo essencial para a identificação com ciclos cardíacos, contudo, tal não se verificou para escalogramas. Neste estudo, demonstrou-se que a utilização de ciclos tem mais potencial para tornar um sistema de identificação biométrica eficiente, do que a utilização de escalogramas. No que diz respeito ao sistema de autenticação biométrica, foi utilizado um algoritmo baseado em distâncias, testado com os dois tipos de templates numa configuração concatenada, isto é, uma configuração na qual cada sujeito e representado por um sinal que contém uma sequência de todos os seus templates, seguidos uns dos outros. A avaliação da performance do sistema foi feita com base nos valores de taxa de autenticação e taxa de impostores, que indicam o número de indivíduos corretamente autenticados face ao número total de indivíduos, e o número de impostores autenticados face ao número total de indivíduos, respetivamente. Os ciclos cardíacos foram testados com e sem redução de dimensionalidade, sendo que a melhor performance foi obtida usando 60 ciclos não normalizados sem redução de dimensionalidade. Para esta configuração, obteve-se uma taxa de autenticação de 90,48% e uma taxa de impostores de 13,06%. Desta forma, concluiu-se que reduzir a dimensionalidade dos ciclos cardíacos prejudica o desempenho do sistema, uma vez que se perdem algumas características indispensáveis para a distinção entre sujeitos. Para os escalogramas, a melhor configuração, que corresponde ao uso de 60 escalogramas normalizados de tamanho 56, atingiu uma taxa de autenticação de 98,42% e uma taxa de impostores de 14,34%. Sendo que a dimensionalidade dos escalogramas foi reduzida com recurso a ICA, foi ainda avaliada a performance do sistema quando reduzido o número de componentes independentes. Os resultados mostraram que um número de componentes igual ao número de sujeitos otimiza o desempenho do sistema, uma vez que se verificou um decréscimo da taxa de autenticação quando reduzido o número de componentes. Assim, concluiu-se que são necessárias 63 componentes independentes para distinguir corretamente os 63 sujeitos. Para a autenticação através de ciclos cardíacos, a normalização e a redução de dimensionalidade são dois processos que degradam a performance do sistema, enquanto que, quando utilizados escalogramas, a normalização e vantajosa. Os resultados obtidos provaram ainda que, contrariamente ao que acontece para processos de identificação, a utilização de escalogramas e uma abordagem mais eficiente e eficaz para a autenticação de indivíduos, do que a utilização de ciclos. Esta investigação comprovou o potencial do ECG enquanto traço biométrico para identificação e autenticação de indivíduos, fazendo uma análise comparativa entre diferentes templates extraídos dos sinais ECG e diferentes metodologias na fase de classificação, e avaliando o desempenho do sistema em cada uma das configurações testadas. Estudos anteriores apresentaram algumas limitações, nomeadamente, o uso de aquisições “on-the-person”, ˜ que apresentam pouco potencial para serem integradas em sistemas biométricos devido à baixa praticidade, e à classificação numa modalidade “intra-sessão”, na qual os dados classificados e os dados armazenados foram adquiridos numa só sessão. Este estudo preenche essas lacunas, visto que utilizou dados adquiridos “off-the-person”, dados esses que foram testados numa modalidade “entre-sessões”. Apesar das aquisições ˜ “off-the-person” estarem sujeitas a mais ruídos e, consequentemente, dificultarem processos de identificação ou autenticação, estas abordagens são as mais adequadas para sistemas biométricos, dada a sua possível integração nas mais diversas aplicações tecnológicas. A modalidade “entre-sessões” resulta também numa pior performance relativamente a utilização de sinais de uma só sessão. No entanto, permite comprovar a estabilidade do ECG ao longo do tempo, o que é um fator indispensável para o funcionamento adequado de um sistema biométrico, uma vez que o mesmo terá que comparar diversas vezes o ECG apresentado no momento de identificação ou autenticação, com o ECG armazenado uma única vez na base de dados. Apesar dos bons resultados apresentados nesta dissertação, no futuro devem ser exploradas bases de dados que contenham mais participantes, com uma faixa etária mais alargada, incluindo participantes com diversas condições de saúde, com aquisições separadas por um período de tempo mais longo, de forma a simular o melhor possível a realidade de um sistema biométrico.Biometrics is a rapidly growing field with applications in personal identification and authentication. Over the recent years, several studies have demonstrated the potential of Electrocardiogram (ECG) to be used as a physiological signature for biometric systems. In this dissertation, the possibility of using the ECG signal as an unequivocal biometric trait for identification and authentication purposes has been presented. The ECG data used was from a publicly available database, the Check Your Biosignals Here initiative (CHBYi) database, developed for biometric purposes, containing records of 63 participants. Data was collected through an off-the-person approach, in two different moments, separated by three months, resulting in two acquisitions per subject. Signals from the first acquisition represent, in a biometric system, the data stored in the database, whereas signals from the second acquisition represent the data to be authenticated or identified. The proposed identification and authentication systems included several steps: signal pre-processing, signal processing, and classification. In the pre-processing phase, signals were filtered in order to remove noises, while the signal processing consisted of extracting and generating the biometric templates. For that, firstly, the cardiac cycles were extracted from the ECG signals, and segment elimination was performed to find the segments more similar to one another, resulting in two sets of templates, with 20 and 60 templates per participant, respectively. After that, two types of templates were generated: 1) templates based on cardiac cycles, and 2) templates based on scalograms generated from the cardiac cycles, with two different sizes, 56x56 and 224x224. Due to the large size of the scalograms, ICA was applied to reduce their dimensionality. Thus, the biometric systems were evaluated with two sets of each type of template in order to analyze the advantages of using more or fewer templates per subject, and the templates were also tested with and without normalization. For the identification system using cardiac cycles, LDA, kNN, DT, and SVM were tested as classifiers in an “across-session” modality, reaching an accuracy of 79.37% for the best model (LDA) in the best configuration (60 normalized cardiac cycles). When using scalograms, two different methodologies were tested: 1) neural network, and 2) a distance-based algorithm. The best accuracy was 69.84% for 60 not-normalized scalograms of Size 224, using NN. Thus, results suggested that the templates based on cardiac cycles are a more promising approach for identification tasks. For the authentication, a distance-based algorithm was used for both templates. Cardiac cycles were tested with and without dimensionality reduction, and the best configuration (60 not-normalized cardiac cycles without dimensionality reduction) reached an accuracy of 90.48% and an impostor score of 13.06%. For the scalograms, the best configuration (60 normalized scalograms of Size 56) reached an accuracy of 98.42% and an impostor score of 14.34%. Therefore, using scalograms for the authentication task proved to be a more efficient and accurate approach. The results from this work support the claim that ECG-based biometrics can be successfully used for personal identification and authentication. This study brings novelty by exploring different templates and methodologies in order to perform a comparative analysis and find the approaches that optimize the performance of the biometric system. Moreover, this represents a step forward towards a real-world application of an ECG-based biometric system, mainly due to the use of data from off-the-person acquisitions in an across-session modality

    Automated ECG Analysis for Localizing Thrombus in Culprit Artery Using Rule Based Information Fuzzy Network

    Get PDF
    Cardio-vascular diseases are one of the foremost causes of mortality in today’s world. The prognosis for cardiovascular diseases is usually done by ECG signal, which is a simple 12-lead Electrocardiogram (ECG) that gives complete information about the function of the heart including the amplitude and time interval of P-QRST-U segment. This article recommends a novel approach to identify the location of thrombus in culprit artery using the Information Fuzzy Network (IFN). Information Fuzzy Network, being a supervised machine learning technique, takes known evidences based on rules to create a predicted classification model with thrombus location obtained from the vast input ECG data. These rules are well-defined procedures for selecting hypothesis that best fits a set of observations. Results illustrate that the recommended approach yields an accurateness of 92.30%. This novel approach is shown to be a viable ECG analysis approach for identifying the culprit artery and thus localizing the thrombus

    Fetal Cardiovascular Magnetic Resonance Imaging - Technical development and clinical utility

    Get PDF
    corecore