7,166 research outputs found

    Localized orthogonal decomposition method for the wave equation with a continuum of scales

    Get PDF
    This paper is devoted to numerical approximations for the wave equation with a multiscale character. Our approach is formulated in the framework of the Localized Orthogonal Decomposition (LOD) interpreted as a numerical homogenization with an L2L^2-projection. We derive explicit convergence rates of the method in the L∞(L2)L^{\infty}(L^2)-, W1,∞(L2)W^{1,\infty}(L^2)- and L∞(H1)L^{\infty}(H^1)-norms without any assumptions on higher order space regularity or scale-separation. The order of the convergence rates depends on further graded assumptions on the initial data. We also prove the convergence of the method in the framework of G-convergence without any structural assumptions on the initial data, i.e. without assuming that it is well-prepared. This rigorously justifies the method. Finally, the performance of the method is demonstrated in numerical experiments

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    The wave packet propagation using wavelets

    Get PDF
    It is demonstrated that the wavelets can be used to considerably speed up simulations of the wave packet propagation in multiscale systems. Extremely high efficiency is obtained in the representation of both bound and continuum states. The new method is compared with the fast Fourier algorithm. Depending on ratios of typical scales of a quantum system in question, the wavelet method appears to be faster by a few orders of magnitude.Comment: Latex 7 pages, 3 colored figures (Fig1 postscript, Fig2,3 gif) in files separate from the pape

    Localized Orthogonal Decomposition for two-scale Helmholtz-type problems

    Full text link
    In this paper, we present a Localized Orthogonal Decomposition (LOD) in Petrov-Galerkin formulation for a two-scale Helmholtz-type problem. The two-scale problem is, for instance, motivated from the homogenization of the Helmholtz equation with high contrast, studied together with a corresponding multiscale method in (Ohlberger, Verf\"urth. A new Heterogeneous Multiscale Method for the Helmholtz equation with high contrast, arXiv:1605.03400, 2016). There, an unavoidable resolution condition on the mesh sizes in terms of the wave number has been observed, which is known as "pollution effect" in the finite element literature. Following ideas of (Gallistl, Peterseim. Comput. Methods Appl. Mech. Engrg. 295:1-17, 2015), we use standard finite element functions for the trial space, whereas the test functions are enriched by solutions of subscale problems (solved on a finer grid) on local patches. Provided that the oversampling parameter mm, which indicates the size of the patches, is coupled logarithmically to the wave number, we obtain a quasi-optimal method under a reasonable resolution of a few degrees of freedom per wave length, thus overcoming the pollution effect. In the two-scale setting, the main challenges for the LOD lie in the coupling of the function spaces and in the periodic boundary conditions.Comment: 20 page

    Crossover from the chiral to the standard universality classes in the conductance of a quantum wire with random hopping only

    Full text link
    The conductance of a quantum wire with off-diagonal disorder that preserves a sublattice symmetry (the random hopping problem with chiral symmetry) is considered. Transport at the band center is anomalous relative to the standard problem of Anderson localization both in the diffusive and localized regimes. In the diffusive regime, there is no weak-localization correction to the conductance and universal conductance fluctuations are twice as large as in the standard cases. Exponential localization occurs only for an even number of transmission channels in which case the localization length does not depend on whether time-reversal and spin rotation symmetry are present or not. For an odd number of channels the conductance decays algebraically. Upon moving away from the band center transport characteristics undergo a crossover to those of the standard universality classes of Anderson localization. This crossover is calculated in the diffusive regime.Comment: 22 pages, 9 figure

    Numerical upscaling for wave equations with time-dependent multiscale coefficients

    Get PDF
    In this paper, we consider the classical wave equation with time-dependent, spatially multiscale coefficients. We propose a fully discrete computational multiscale method in the spirit of the localized orthogonal decomposition in space with a backward Euler scheme in time. We show optimal convergence rates in space and time beyond the assumptions of spatial periodicity or scale separation of the coefficients. Further, we propose an adaptive update strategy for the time-dependent multiscale basis. Numerical experiments illustrate the theoretical results and showcase the practicability of the adaptive update strategy
    • …
    corecore