57,481 research outputs found

    Localized Feature Selection For Unsupervised Learning

    Get PDF
    Clustering is the unsupervised classification of data objects into different groups (clusters) such that objects in one group are similar together and dissimilar from another group. Feature selection for unsupervised learning is a technique that chooses the best feature subset for clustering. In general, unsupervised feature selection algorithms conduct feature selection in a global sense by producing a common feature subset for all the clusters. This, however, can be invalid in clustering practice, where the local intrinsic property of data matters more, which implies that localized feature selection is more desirable. In this dissertation, we focus on cluster-wise feature selection for unsupervised learning. We first propose a Cross-Projection method to achieve localized feature selection. The proposed algorithm computes adjusted and normalized scatter separability for individual clusters. A sequential backward search is then applied to find the optimal (perhaps local) feature subsets for each cluster. Our experimental results show the need for feature selection in clustering and the benefits of selecting features locally. We also present another approach based on Maximal Likelihood with Gaussian mixture. We introduce a probabilistic model based on Gaussian mixture. The feature relevance for an individual cluster is treated as a probability, which is represented by localized feature saliency and estimated through Expectation Maximization (EM) algorithm during the clustering process. In addition, the number of clusters is determined by integrating a Minimum Message Length (MML) criterion. Experiments carried out on both synthetic and real-world datasets illustrate the performance of the approach in finding embedded clusters. Another novel approach based on Bayesian framework is successfully implemented. We place prior distributions over the parameters of the Gaussian mixture model, and maximize the marginal log-likelihood given mixing co-efficient and feature saliency. The parameters are estimated by Bayesian Variational Learning. This approach computes the feature saliency for each cluster, and detects the number of clusters simultaneously

    Adaptive grid based localized learning for multidimensional data

    Get PDF
    Rapid advances in data-rich domains of science, technology, and business has amplified the computational challenges of Big Data synthesis necessary to slow the widening gap between the rate at which the data is being collected and analyzed for knowledge. This has led to the renewed need for efficient and accurate algorithms, framework, and algorithmic mechanisms essential for knowledge discovery, especially in the domains of clustering, classification, dimensionality reduction, feature ranking, and feature selection. However, data mining algorithms are frequently challenged by the sparseness due to the high dimensionality of the datasets in such domains which is particularly detrimental to the performance of unsupervised learning algorithms. The motivation for the research presented in this dissertation is to develop novel data mining algorithms to address the challenges of high dimensionality, sparseness and large volumes of datasets by using a unique grid-based localized learning paradigm for data movement clustering and classification schema. The grid-based learning is recognized in data mining as these algorithms are inherently efficient since they reduce the search space by partitioning the feature space into effective partitions. However, these approaches have not been successfully devised for supervised learning algorithms or sparseness reduction algorithm as they require careful estimation of grid sizes, partitions and data movement error calculations. Grid-based localized learning algorithms can scale well with an increase in dimensionality and the size of the datasets. To fulfill the goal of designing and developing learning algorithms that can handle data sparseness, high data dimensionality, and large size of data, in a concurrent manner to avoid the feature selection biases, a set of novel data mining algorithms using grid-based localized learning principles are developed and presented. The first algorithm is a unique computational framework for feature ranking that employs adaptive grid-based data shrinking for feature ranking. This method addresses the limitations of existing feature ranking methods by using a scoring function that discovers and exploits dependencies from all the features in the data. Data shrinking principles are established and metricized to capture and exploit dependencies between features. The second core algorithmic contribution is a novel supervised learning algorithm that utilizes grid-based localized learning to build a nonparametric classification model. In this classification model, feature space is divided using uniform/non-uniform partitions and data space subdivision is performed using a grid structure which is then used to build a classification model using grid-based nearest-neighbor learning. The third algorithm is an unsupervised clustering algorithm that is augmented with data shrinking to enhance the clustering performance of the algorithm. This algorithm addresses the limitations of the existing grid-based data shrinking and clustering algorithms by using an adaptive grid-based learning. Multiple experiments on a diversified set of datasets evaluate and discuss the effectiveness of dimensionality reduction, feature selection, unsupervised and supervised learning, and the scalability of the proposed methods compared to the established methods in the literature

    Localized Lasso for High-Dimensional Regression

    Get PDF
    We introduce the localized Lasso, which is suited for learning models that are both interpretable and have a high predictive power in problems with high dimensionality dd and small sample size nn. More specifically, we consider a function defined by local sparse models, one at each data point. We introduce sample-wise network regularization to borrow strength across the models, and sample-wise exclusive group sparsity (a.k.a., 1,2\ell_{1,2} norm) to introduce diversity into the choice of feature sets in the local models. The local models are interpretable in terms of similarity of their sparsity patterns. The cost function is convex, and thus has a globally optimal solution. Moreover, we propose a simple yet efficient iterative least-squares based optimization procedure for the localized Lasso, which does not need a tuning parameter, and is guaranteed to converge to a globally optimal solution. The solution is empirically shown to outperform alternatives for both simulated and genomic personalized medicine data

    Localization and recognition of the scoreboard in sports video based on SIFT point matching

    Get PDF
    In broadcast sports video, the scoreboard is attached at a fixed location in the video and generally the scoreboard always exists in all video frames in order to help viewers to understand the match’s progression quickly. Based on these observations, we present a new localization and recognition method for scoreboard text in sport videos in this paper. The method first matches the Scale Invariant Feature Transform (SIFT) points using a modified matching technique between two frames extracted from a video clip and then localizes the scoreboard by computing a robust estimate of the matched point cloud in a two-stage non-scoreboard filter process based on some domain rules. Next some enhancement operations are performed on the localized scoreboard, and a Multi-frame Voting Decision is used. Both aim to increasing the OCR rate. Experimental results demonstrate the effectiveness and efficiency of our proposed method

    Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering

    Get PDF
    This study introduces a new method for detecting and sorting spikes from multiunit recordings. The method combines the wavelet transform, which localizes distinctive spike features, with superparamagnetic clustering, which allows automatic classification of the data without assumptions such as low variance or gaussian distributions. Moreover, an improved method for setting amplitude thresholds for spike detection is proposed. We describe several criteria for implementation that render the algorithm unsupervised and fast. The algorithm is compared to other conventional methods using several simulated data sets whose characteristics closely resemble those of in vivo recordings. For these data sets, we found that the proposed algorithm outperformed conventional methods
    corecore