2,633 research outputs found

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Merlin: A Language for Provisioning Network Resources

    Full text link
    This paper presents Merlin, a new framework for managing resources in software-defined networks. With Merlin, administrators express high-level policies using programs in a declarative language. The language includes logical predicates to identify sets of packets, regular expressions to encode forwarding paths, and arithmetic formulas to specify bandwidth constraints. The Merlin compiler uses a combination of advanced techniques to translate these policies into code that can be executed on network elements including a constraint solver that allocates bandwidth using parameterizable heuristics. To facilitate dynamic adaptation, Merlin provides mechanisms for delegating control of sub-policies and for verifying that modifications made to sub-policies do not violate global constraints. Experiments demonstrate the expressiveness and scalability of Merlin on real-world topologies and applications. Overall, Merlin simplifies network administration by providing high-level abstractions for specifying network policies and scalable infrastructure for enforcing them

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Reducing the effects of routing inaccuracy by means of prediction and an innovative link-state cost

    Get PDF
    The routing inaccuracy problem is one of the major issues impeding the evolution and deployment of Constraint- Based Routing (CBR) techniques. This paper proposes a promising CBR strategy that combines the strengths of prediction with an innovative link-state cost. The latter explicitly integrates a two-bit counter predictor, with a novel metric that stands for the degree of inaccuracy (seen by the source node) of the state information associated with the links along a path. In our routing model, Link-State Advertisements (LSAs) are only distributed upon topological changes in the network, i.e., the state and availability of network resources along a path are predicted from the source rather than updated through conventional LSAs. As a proof-of-concept, we apply our routing strategy in the context of circuit-switched networks. We show that our approach considerably reduces the impact of routing inaccuracy on the blocking probability, while eliminating the typical LSAs caused by the traffic dynamics in CBR protocols.Postprint (published version

    Overlay networks for smart grids

    Get PDF
    • …
    corecore