100 research outputs found

    Numerical study of pattern formation following a convective instability in non-Boussinesq fluids

    Full text link
    We present a numerical study of a model of pattern formation following a convective instability in a non-Boussinesq fluid. It is shown that many of the features observed in convection experiments conducted on CO2CO_{2} gas can be reproduced by using a generalized two-dimensional Swift-Hohenberg equation. The formation of hexagonal patterns, rolls and spirals is studied, as well as the transitions and competition among them. We also study nucleation and growth of hexagonal patterns and find that the front velocity in this two dimensional model is consistent with the prediction of marginal stability theory for one dimensional fronts.Comment: 9 pages, report FSU-SCRI-92-6

    Transverse Patterns in Nonlinear Optical Resonators

    Full text link
    The book is devoted to the formation and dynamics of localized structures (vortices, solitons) and extended patterns (stripes, hexagons, tilted waves) in nonlinear optical resonators such as lasers, optical parametric oscillators, and photorefractive oscillators. The theoretical analysis is performed by deriving order parameter equations, and also through numerical integration of microscopic models of the systems under investigation. Experimental observations, and possible technological implementations of transverse optical patterns are also discussed. A comparison with patterns found in other nonlinear systems, i.e. chemical, biological, and hydrodynamical systems, is given. This article contains the table of contents and the introductory chapter of the book.Comment: 37 pages, 14 figures. Table of contents and introductory chapter of the boo

    Pattern formation for the Swift-Hohenberg equation on the hyperbolic plane

    Full text link
    We present an overview of pattern formation analysis for an analogue of the Swift-Hohenberg equation posed on the real hyperbolic space of dimension two, which we identify with the Poincar\'e disc D. Different types of patterns are considered: spatially periodic stationary solutions, radial solutions and traveling waves, however there are significant differences in the results with the Euclidean case. We apply equivariant bifurcation theory to the study of spatially periodic solutions on a given lattice of D also called H-planforms in reference with the "planforms" introduced for pattern formation in Euclidean space. We consider in details the case of the regular octagonal lattice and give a complete descriptions of all H-planforms bifurcating in this case. For radial solutions (in geodesic polar coordinates), we present a result of existence for stationary localized radial solutions, which we have adapted from techniques on the Euclidean plane. Finally, we show that unlike the Euclidean case, the Swift-Hohenberg equation in the hyperbolic plane undergoes a Hopf bifurcation to traveling waves which are invariant along horocycles of D and periodic in the "transverse" direction. We highlight our theoretical results with a selection of numerical simulations.Comment: Dedicated to Klaus Kirchg\"assne

    Localized radial roll patterns in higher space dimensions

    Full text link
    Localized roll patterns are structures that exhibit a spatially periodic profile in their center. When following such patterns in a system parameter in one space dimension, the length of the spatial interval over which these patterns resemble a periodic profile stays either bounded, in which case branches form closed bounded curves (“isolas”), or the length increases to infinity so that branches are unbounded in function space (“snaking”). In two space dimensions, numerical computations show that branches of localized rolls exhibit a more complicated structure in which both isolas and snaking occur. In this paper, we analyse the structure of branches of localized radial roll solutions in dimension 1+ε, with 0 < ε 1, through a perturbation analysis. Our analysis sheds light on some of the features visible in the planar case.http://math.bu.edu/people/mabeck/Bramburgeretal18.pdfFirst author draf

    Snakes and ladders in an inhomogeneous neural field model

    Get PDF
    Continuous neural field models with inhomogeneous synaptic connectivities are known to support traveling fronts as well as stable bumps of localized activity. We analyze stationary localized structures in a neural field model with periodic modulation of the synaptic connectivity kernel and find that they are arranged in a snakes-and-ladders bifurcation structure. In the case of Heaviside firing rates, we construct analytically symmetric and asymmetric states and hence derive closed-form expressions for the corresponding bifurcation diagrams. We show that the ideas proposed by Beck and co-workers to analyze snaking solutions to the Swift-Hohenberg equation remain valid for the neural field model, even though the corresponding spatial-dynamical formulation is non-autonomous. We investigate how the modulation amplitude affects the bifurcation structure and compare numerical calculations for steep sigmoidal firing rates with analytic predictions valid in the Heaviside limit
    • …
    corecore