1,303 research outputs found

    Decentralized Massive MIMO Processing Exploring Daisy-chain Architecture and Recursive Algorithms

    Full text link
    Algorithms for Massive MIMO uplink detection and downlink precoding typically rely on a centralized approach, by which baseband data from all antenna modules are routed to a central node in order to be processed. In the case of Massive MIMO, where hundreds or thousands of antennas are expected in the base-station, said routing becomes a bottleneck since interconnection throughput is limited. This paper presents a fully decentralized architecture and an algorithm for Massive MIMO uplink detection and downlink precoding based on the Stochastic Gradient Descent (SGD) method, which does not require a central node for these tasks. Through a recursive approach and very low complexity operations, the proposed algorithm provides a good trade-off between performance, interconnection throughput and latency. Further, our proposed solution achieves significantly lower interconnection data-rate than other architectures, enabling future scalability.Comment: Manuscript accepted for publication in IEEE Transactions on Signal Processin

    Node localization in underwater sensor networks (UWSN)

    Get PDF
    This dissertation focuses on node localization in underwater wireless sensor networks (UWSNs) where anchor nodes have knowledge of their own locations and communicate with sensor nodes in acoustic or magnetic induction (MI) means. The sensor nodes utilize the communication signals and the locations of anchor nodes to locate themselves and propagate their locations through the network. For UWSN using MI communications, this dissertation proposes two localization methods: rotation matrix (RM)-based method and the distance-based method. Both methods require only two anchor nodes with arbitrarily oriented tri-directional coils to locate one sensor node in the 3-D space, thus having advantages in a sparse network. Simulation studies show that the RM-based method achieves high localization accuracy, while the distance-based method exhibits less computational complexity. For UWSN using acoustic communications, this dissertation proposes a novel multi-hop node localization method in the 2-D and 3-D spaces, respectively. The proposed method estimates Euclidean distances to anchor nodes via multi-hop propagations with the help of angle of arrival (AoA) measurements. Simulation results show that the proposed method achieves better localization accuracy than existing multi-hop methods, with high localization coverage. This dissertation also investigates the hardware implementation of acoustic transmitter and receiver, and conducted field experiments with the hardware to estimate ToA using single pseudo-noise (PN) and dual PN(DPN) sequences. Both simulation and field test results show that the DPN sequences outperform the single PNs in severely dispersive channels and when the carrier frequency offset (CFO) is high --Abstract, page iv

    Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems

    Get PDF
    Millimeter wave signals and large antenna arrays are considered enabling technologies for future 5G networks. While their benefits for achieving high-data rate communications are well-known, their potential advantages for accurate positioning are largely undiscovered. We derive the Cram\'{e}r-Rao bound (CRB) on position and rotation angle estimation uncertainty from millimeter wave signals from a single transmitter, in the presence of scatterers. We also present a novel two-stage algorithm for position and rotation angle estimation that attains the CRB for average to high signal-to-noise ratio. The algorithm is based on multiple measurement vectors matching pursuit for coarse estimation, followed by a refinement stage based on the space-alternating generalized expectation maximization algorithm. We find that accurate position and rotation angle estimation is possible using signals from a single transmitter, in either line-of- sight, non-line-of-sight, or obstructed-line-of-sight conditions.Comment: The manuscript has been revised, and increased from 27 to 31 pages. Also, Fig.2, Fig. 10 and Table I are adde

    Optimizing Indoor Location Based Tracking through Proper Filter Selection and Wireless Sensor Network Design

    Get PDF
    Indoor positioning system (IPS) is a topic that is coming up more and more for various reasons, such as allowing companies to track important objects using radio frequency identification (RFID) and employees with Bluetooth devices inside a facility. Geofencing is one of the biggest topics with IPS and is meant to limit access to a network in specified areas. Devices that incorporate indoor tracking are not initially precise when objects and employees are on the move. This movement requires devices to have a reliable filter for noise and package lose. For this paper, the comparison between extended Kalman filters and unscented Kalman filter in a controlled environment will help indicate which is ideal for IPS tracking. Both filters will be applied and compared on location accuracy metrics. The proper design of the wireless network is also crucial for having an effective IPS method. This will show the difference in wireless networks and how the initial design will lead to greater chance of success for IPS

    Indoor positioning system with smart wi-fi antennas

    Get PDF
    The advancements of the indoor positioning system (IPS) in the recent years have been immense, yet we do not see the standardization of any solution. The system which is being used in many public scenarios is the Wi-Fi technology and the solution which we propose in this dissertation would not require change of infrastructure, but rather reusing existing one and simply enhancing it. This solution is low-cost and with relatively high precision considering current precision of Global Positioning System (GPS) of five meters. In this dissertation prototype is designed with motorized directional antennas using signal strength of two ESP8266. These position measurements are calculated and presented via micro controller and a Wi-Fi enabled device – ESP8266. Together with Yagi antenna, this solution has shown extremely good IPS characteristics and possibility to be implemented in real-case scenarios

    A Review of Indoor Millimeter Wave Device-based Localization and Device-free Sensing Technologies and Applications

    Full text link
    The commercial availability of low-cost millimeter wave (mmWave) communication and radar devices is starting to improve the penetration of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifth-generation (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We first overview key concepts about mmWave signal propagation and system design. Then, we provide a detailed account of approaches and algorithms for localization and sensing enabled by mmWaves. We consider several dimensions in our analysis, including the main objectives, techniques, and performance of each work, whether each research reached some degree of implementation, and which hardware platforms were used for this purpose. We conclude by discussing that better algorithms for consumer-grade devices, data fusion methods for dense deployments, as well as an educated application of machine learning methods are promising, relevant and timely research directions.Comment: 43 pages, 13 figures. Accepted in IEEE Communications Surveys & Tutorials (IEEE COMST

    D1.3 -- Short Report on the First Draft Multi-link Channel Model

    Get PDF

    Comparative node selection-based localization technique for wireless sensor networks: A bilateration approach

    Get PDF
    Wireless sensor networks find extensive applications, such as environmental and smart city monitoring, structural health, and target location. To be useful, most sensor data must be localized. We propose a node localization technique based on bilateration comparison (BACL) for dense networks, which considers two reference nodes to determine the unknown position of a third node. The mirror positions resulted from bilateration are resolved by comparing their coordinates with the coordinates of the reference nodes. Additionally, we use network clustering to further refine the location of the nodes. We show that BACL has several advantages over Energy Aware Co-operative Localization (EACL) and Underwater Recursive Position Estimation (URPE): (1) BACL uses bilateration (needs only two reference nodes) instead of trilateration (that needs three reference nodes), (2) BACL needs reference (anchor) nodes only on the field periphery, and (3) BACL needs substantially less communication and computation. Through simulation, we show that BACL localization accuracy, as root mean square error, improves by 53% that of URPE and by 40% that of EACL. We also explore the BACL localization error when the anchor nodes are placed on one or multiple sides of a rectangular field, as a trade-off between localization accuracy and network deployment effort. Best accuracy is achieved using anchors on all field sides, but we show that localization refinement using node clustering and anchor nodes only on one side of the field has comparable localization accuracy with anchor nodes on two sides but without clustering
    • …
    corecore