9 research outputs found

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery

    Separator fluid volume requirements in multi-infusion settings

    Get PDF
    INTRODUCTION. Intravenous (IV) therapy is a widely used method for the administration of medication in hospitals worldwide. ICU and surgical patients in particular often require multiple IV catheters due to incompatibility of certain drugs and the high complexity of medical therapy. This increases discomfort by painful invasive procedures, the risk of infections and costs of medication and disposable considerably. When different drugs are administered through the same lumen, it is common ICU practice to flush with a neutral fluid between the administration of two incompatible drugs in order to optimally use infusion lumens. An important constraint for delivering multiple incompatible drugs is the volume of separator fluid that is sufficient to safely separate them. OBJECTIVES. In this pilot study we investigated whether the choice of separator fluid, solvent, or administration rate affects the separator volume required in a typical ICU infusion setting. METHODS. A standard ICU IV line (2m, 2ml, 1mm internal diameter) was filled with methylene blue (40 mg/l) solution and flushed using an infusion pump with separator fluid. Independent variables were solvent for methylene blue (NaCl 0.9% vs. glucose 5%), separator fluid (NaCl 0.9% vs. glucose 5%), and administration rate (50, 100, or 200 ml/h). Samples were collected using a fraction collector until <2% of the original drug concentration remained and were analyzed using spectrophotometry. RESULTS. We did not find a significant effect of administration rate on separator fluid volume. However, NaCl/G5% (solvent/separator fluid) required significantly less separator fluid than NaCl/NaCl (3.6 ± 0.1 ml vs. 3.9 ± 0.1 ml, p <0.05). Also, G5%/G5% required significantly less separator fluid than NaCl/NaCl (3.6 ± 0.1 ml vs. 3.9 ± 0.1 ml, p <0.05). The significant decrease in required flushing volume might be due to differences in the viscosity of the solutions. However, mean differences were small and were most likely caused by human interactions with the fluid collection setup. The average required flushing volume is 3.7 ml. CONCLUSIONS. The choice of separator fluid, solvent or administration rate had no impact on the required flushing volume in the experiment. Future research should take IV line length, diameter, volume and also drug solution volumes into account in order to provide a full account of variables affecting the required separator fluid volume

    [<sup>18</sup>F]fluorination of biorelevant arylboronic acid pinacol ester scaffolds synthesized by convergence techniques

    Get PDF
    Aim: The development of small molecules through convergent multicomponent reactions (MCR) has been boosted during the last decade due to the ability to synthesize, virtually without any side-products, numerous small drug-like molecules with several degrees of structural diversity.(1) The association of positron emission tomography (PET) labeling techniques in line with the “one-pot” development of biologically active compounds has the potential to become relevant not only for the evaluation and characterization of those MCR products through molecular imaging, but also to increase the library of radiotracers available. Therefore, since the [18F]fluorination of arylboronic acid pinacol ester derivatives tolerates electron-poor and electro-rich arenes and various functional groups,(2) the main goal of this research work was to achieve the 18F-radiolabeling of several different molecules synthesized through MCR. Materials and Methods: [18F]Fluorination of boronic acid pinacol esters was first extensively optimized using a benzaldehyde derivative in relation to the ideal amount of Cu(II) catalyst and precursor to be used, as well as the reaction solvent. Radiochemical conversion (RCC) yields were assessed by TLC-SG. The optimized radiolabeling conditions were subsequently applied to several structurally different MCR scaffolds comprising biologically relevant pharmacophores (e.g. β-lactam, morpholine, tetrazole, oxazole) that were synthesized to specifically contain a boronic acid pinacol ester group. Results: Radiolabeling with fluorine-18 was achieved with volumes (800 μl) and activities (≤ 2 GBq) compatible with most radiochemistry techniques and modules. In summary, an increase in the quantities of precursor or Cu(II) catalyst lead to higher conversion yields. An optimal amount of precursor (0.06 mmol) and Cu(OTf)2(py)4 (0.04 mmol) was defined for further reactions, with DMA being a preferential solvent over DMF. RCC yields from 15% to 76%, depending on the scaffold, were reproducibly achieved. Interestingly, it was noticed that the structure of the scaffolds, beyond the arylboronic acid, exerts some influence in the final RCC, with electron-withdrawing groups in the para position apparently enhancing the radiolabeling yield. Conclusion: The developed method with high RCC and reproducibility has the potential to be applied in line with MCR and also has a possibility to be incorporated in a later stage of this convergent “one-pot” synthesis strategy. Further studies are currently ongoing to apply this radiolabeling concept to fluorine-containing approved drugs whose boronic acid pinacol ester precursors can be synthesized through MCR (e.g. atorvastatin)
    corecore