77,079 research outputs found

    Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures

    Get PDF
    The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis

    Network perspectives on epilepsy using EEG/MEG source connectivity

    Get PDF
    The evolution of EEG/MEG source connectivity is both, a promising, and controversial advance in the characterization of epileptic brain activity. In this narrative review we elucidate the potential of this technology to provide an intuitive view of the epileptic network at its origin, the different brain regions involved in the epilepsy, without the limitation of electrodes at the scalp level. Several studies have confirmed the added value of using source connectivity to localize the seizure onset zone and irritative zone or to quantify the propagation of epileptic activity over time. It has been shown in pilot studies that source connectivity has the potential to obtain prognostic correlates, to assist in the diagnosis of the epilepsy type even in the absence of visually noticeable epileptic activity in the EEG/MEG, and to predict treatment outcome. Nevertheless, prospective validation studies in large and heterogeneous patient cohorts are still lacking and are needed to bring these techniques into clinical use. Moreover, the methodological approach is challenging, with several poorly examined parameters that most likely impact the resulting network patterns. These fundamental challenges affect all potential applications of EEG/MEG source connectivity analysis, be it in a resting, spiking, or ictal state, and also its application to cognitive activation of the eloquent area in presurgical evaluation. However, such method can allow unique insights into physiological and pathological brain functions and have great potential in (clinical) neuroscience

    Morphological plasticity of astroglia: Understanding synaptic microenvironment

    Get PDF
    Memory formation in the brain is thought to rely on the remodeling of synaptic connections which eventually results in neural network rewiring. This remodeling is likely to involve ultrathin astroglial protrusions which often occur in the immediate vicinity of excitatory synapses. The phenomenology, cellular mechanisms, and causal relationships of such astroglial restructuring remain, however, poorly understood. This is in large part because monitoring and probing of the underpinning molecular machinery on the scale of nanoscopic astroglial compartments remains a challenge. Here we briefly summarize the current knowledge regarding the cellular organisation of astroglia in the synaptic microenvironment and discuss molecular mechanisms potentially involved in use-dependent astroglial morphogenesis. We also discuss recent observations concerning morphological astroglial plasticity, the respective monitoring methods, and some of the newly emerging techniques that might help with conceptual advances in the area. GLIA 2015

    Analysis of quantification methods used for cell viability, cell morphology, and synaptic formation in modeling HIV associated dementia in primary neuronal cultures.

    Get PDF
    Change is inevitable, changes in neuronal function occur in physiologic and pathologic processes. The ability to reliably analyze and quantify those changes in neuronal morphology and function has been an important part of technical developments in Neuroscience. A key innovation in the Neuroscience was the development of primary neuronal cultures. Primary neuronal cultures allow neurons to be dissociated and studied as individual components. The study of specific pathologic processes associated with neurodegeneration have benefited greatly from the development and characterization of dissociated primary neuronal cultures. Human Immunodeficiency Virus can lead to a neurodegenerative process. Establishing a consistent model for studying the effects of HIV infection in the brain has provided a unique challenge. The use of analysis of quantification of neuronal changes in dissociated primary neurons modeling HIV dementia has proven useful. As the study of this disorder continues the characterization of the model system will become increasing important. This review will focus on analysis of specific techniques used to quantify specific changes in neurons in this model system. As this field moves forward it will be important to specifically focus on techniques involved in cell viability, morphologic changes, and synaptic formatio

    Causal evidence that intrinsic beta frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS

    Get PDF
    Correlative evidence provides support for the idea that brain oscillations underpin neural computations. Recent work using rhythmic stimulation techniques in humans provide causal evidence but the interactions of these external signals with intrinsic rhythmicity remain unclear. Here, we show that sensorimotor cortex precisely follows externally applied rhythmic TMS (rTMS) stimulation in the beta-band but that the elicited responses are strongest at the intrinsic individual beta-peak-frequency. While these entrainment effects are of short duration, even subthreshold rTMS pulses propagate through the network and elicit significant cortico-spinal coupling, particularly when stimulated at the individual beta-frequency. Our results show that externally enforced rhythmicity interacts with intrinsic brain rhythms such that the individual peak frequency determines the effect of rTMS. The observed downstream spinal effect at the resonance frequency provides evidence for the causal role of brain rhythms for signal propagation

    Exclusive neuronal expression of SUCLA2 in the human brain

    Get PDF
    SUCLA2 encodes the ATP-forming subunit (A-SUCL-) of succinyl-CoA ligase, an enzyme of the citric acid cycle. Mutations in SUCLA2 lead to a mitochondrial disorder manifesting as encephalomyopathy with dystonia, deafness and lesions in the basal ganglia. Despite the distinct brain pathology associated with SUCLA2 mutations, the precise localization of SUCLA2 protein has never been investigated. Here we show that immunoreactivity of A-SUCL- in surgical human cortical tissue samples was present exclusively in neurons, identified by their morphology and visualized by double labeling with a fluorescent Nissl dye. A-SUCL- immunoreactivity co-localized >99% with that of the d subunit of the mitochondrial F0-F1 ATP synthase. Specificity of the anti-A-SUCL- antiserum was verified by the absence of labeling in fibroblasts from a patient with a complete deletion of SUCLA2. A-SUCL- immunoreactivity was absent in glial cells, identified by antibodies directed against the glial markers GFAP and S100. Furthermore, in situ hybridization histochemistry demonstrated that SUCLA2 mRNA was present in Nissl-labeled neurons but not glial cells labeled with S100. Immunoreactivity of the GTP-forming subunit (G-SUCL-) encoded by SUCLG2, or in situ hybridization histochemistry for SUCLG2 mRNA could not be demonstrated in either neurons or astrocytes. Western blotting of post mortem brain samples revealed minor G-SUCL- immunoreactivity that was however, not upregulated in samples obtained from diabetic versus non-diabetic patients, as has been described for murine brain. Our work establishes that SUCLA2 is expressed exclusively in neurons in the human cerebral cortex

    Protein synthesis at synaptic sites on dendrites

    Get PDF
    Studies over the past 20 years have revealed that gene expression in neurons is carried out by a distributed network of translational machinery. One component of this network is localized in dendrites, where polyribosomes and associated membranous elements are positioned beneath synapses and translate a particular population of dendritic mRNAs. The localization of translation machinery and mRNAs at synapses endows individual synapses with the capability to independently control synaptic strength through the local synthesis of proteins. The present review discusses recent studies linking synaptic plasticity to dendritic protein synthesis and mRNA trafficking and considers how these processes are regulated. We summarize recent information about how synaptic signaling is coupled to local translation and to the delivery of newly transcribed mRNAs to activated synaptic sites and how local translation may play a role in activity-dependent synaptic modification
    • 

    corecore