863 research outputs found

    Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients

    Get PDF
    Electroencephalography is mandatory to determine the epilepsy syndrome. However, for the precise localization of the irritative zone in patients with focal epilepsy, costly and sometimes cumbersome imaging techniques are used. Recent small studies using electric source imaging suggest that electroencephalography itself could be used to localize the focus. However, a large prospective validation study is missing. This study presents a cohort of 152 operated patients where electric source imaging was applied as part of the pre-surgical work-up allowing a comparison with the results from other methods. Patients (n = 152) with >1 year postoperative follow-up were studied prospectively. The sensitivity and specificity of each imaging method was defined by comparing the localization of the source maximum with the resected zone and surgical outcome. Electric source imaging had a sensitivity of 84% and a specificity of 88% if the electroencephalogram was recorded with a large number of electrodes (128-256 channels) and the individual magnetic resonance image was used as head model. These values compared favourably with those of structural magnetic resonance imaging (76% sensitivity, 53% specificity), positron emission tomography (69% sensitivity, 44% specificity) and ictal/interictal single-photon emission-computed tomography (58% sensitivity, 47% specificity). The sensitivity and specificity of electric source imaging decreased to 57% and 59%, respectively, with low number of electrodes (<32 channels) and a template head model. This study demonstrated the validity and clinical utility of electric source imaging in a large prospective study. Given the low cost and high flexibility of electroencephalographic systems even with high channel counts, we conclude that electric source imaging is a highly valuable tool in pre-surgical epilepsy evaluatio

    Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients

    Get PDF
    Electroencephalography is mandatory to determine the epilepsy syndrome. However, for the precise localization of the irritative zone in patients with focal epilepsy, costly and sometimes cumbersome imaging techniques are used. Recent small studies using electric source imaging suggest that electroencephalography itself could be used to localize the focus. However, a large prospective validation study is missing. This study presents a cohort of 152 operated patients where electric source imaging was applied as part of the pre-surgical work-up allowing a comparison with the results from other methods. Patients (n = 152) with >1 year postoperative follow-up were studied prospectively. The sensitivity and specificity of each imaging method was defined by comparing the localization of the source maximum with the resected zone and surgical outcome. Electric source imaging had a sensitivity of 84% and a specificity of 88% if the electroencephalogram was recorded with a large number of electrodes (128–256 channels) and the individual magnetic resonance image was used as head model. These values compared favourably with those of structural magnetic resonance imaging (76% sensitivity, 53% specificity), positron emission tomography (69% sensitivity, 44% specificity) and ictal/interictal single-photon emission-computed tomography (58% sensitivity, 47% specificity). The sensitivity and specificity of electric source imaging decreased to 57% and 59%, respectively, with low number of electrodes (<32 channels) and a template head model. This study demonstrated the validity and clinical utility of electric source imaging in a large prospective study. Given the low cost and high flexibility of electroencephalographic systems even with high channel counts, we conclude that electric source imaging is a highly valuable tool in pre-surgical epilepsy evaluation

    Dense Array EEG & Epilepsy

    Get PDF

    Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients

    Get PDF
    Electroencephalography is mandatory to determine the epilepsy syndrome. However, for the precise localization of the irritative zone in patients with focal epilepsy, costly and sometimes cumbersome imaging techniques are used. Recent small studies using electric source imaging suggest that electroencephalography itself could be used to localize the focus. However, a large prospective validation study is missing. This study presents a cohort of 152 operated patients where electric source imaging was applied as part of the pre-surgical work-up allowing a comparison with the results from other methods. Patients (n = 152) with >1 year postoperative follow-up were studied prospectively. The sensitivity and specificity of each imaging method was defined by comparing the localization of the source maximum with the resected zone and surgical outcome. Electric source imaging had a sensitivity of 84% and a specificity of 88% if the electroencephalogram was recorded with a large number of electrodes (128-256 channels) and the individual magnetic resonance image was used as head model. These values compared favourably with those of structural magnetic resonance imaging (76% sensitivity, 53% specificity), positron emission tomography (69% sensitivity, 44% specificity) and ictal/interictal single-photon emission-computed tomography (58% sensitivity, 47% specificity). The sensitivity and specificity of electric source imaging decreased to 57% and 59%, respectively, with low number of electrodes (<32 channels) and a template head model. This study demonstrated the validity and clinical utility of electric source imaging in a large prospective study. Given the low cost and high flexibility of electroencephalographic systems even with high channel counts, we conclude that electric source imaging is a highly valuable tool in pre-surgical epilepsy evaluatio

    Rapid and efficient localization of depth electrodes and cortical labeling using free and open source medical software in epilepsy surgery candidates

    Get PDF
    Depth intracranial electrodes (IEs) placement is one of the most used procedures to identify the epileptogenic zone (EZ) in surgical treatment of drug resistant epilepsy patients, about 20?30% of this population. IEs localization is therefore a critical issue defining the EZ and its relation with eloquent functional areas. That information is then used to target the resective surgery and has great potential to affect outcome. We designed a methodological procedure intended to avoid the need for highly specialized medical resources and reduce time to identify the anatomical location of IEs, during the first instances of intracranial EEG recordings. This workflow is based on established open source software; 3D Slicer and Freesurfer that uses MRI and Post-implant CT fusion for the localization of IEs and its relation with automatic labeled surrounding cortex. To test this hypothesis we assessed the time elapsed between the surgical implantation process and the final anatomical localization of IEs by means of our proposed method compared against traditional visual analysis of raw post-implant imaging in two groups of patients. All IEs were identified in the first 24 H (6?24 H) of implantation using our method in 4 patients of the first group. For the control group; all IEs were identified by experts with an overall time range of 36 h to 3 days using traditional visual analysis. It included (7 patients), 3 patients implanted with IEs and the same 4 patients from the first group. Time to localization was restrained in this group by the specialized personnel and the image quality available. To validate our method; we trained two inexperienced operators to assess the position of IEs contacts on four patients (5 IEs) using the proposed method. We quantified the discrepancies between operators and we also assessed the efficiency of our method to define the EZ comparing the findings against the results of traditional analysis.Fil: Princich, Juan Pablo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; ArgentinaFil: Wassermann, Demian. Harvard Medical School; Estados Unidos de América;Fil: Latini, Facundo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; ArgentinaFil: Oddo, Silvia Andrea. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; ArgentinaFil: Blenkmann, Alejandro Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurcs. ; ArgentinaFil: Seifer, Gustavo. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos; ArgentinaFil: Kochen, Sara Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurcs. ; Argentin

    Safety of Intracranial Electroencephalography During Functional Electromagnetic Resonance Imaging in Humans at 1.5 Tesla Using a Head Transmit RF Coil: Histopathological and Heat-Shock Immunohistochemistry Observations

    Get PDF
    OBJECTIVES: Simultaneous intracranial EEG and functional MRI (icEEG-fMRI) recordings in humans, whereby EEG is recorded from electrodes implanted inside the cranium during fMRI scanning, were made possible following safety studies on test phantoms and our specification of a rigorous data acquisition protocol. In parallel with this work, other investigations in our laboratory revealed the damage caused by the EEG electrode implantation procedure at the cellular level. The purpose of this report is to further explore the safety of performing MRI, including simultaneous icEEG-fMRI data acquisitions, in the presence of implanted intra-cranial EEG electrodes, by presenting some histopathological and heat-shock immunopositive labelling observations in surgical tissue samples from patients who underwent the scanning procedure. METHODS: We performed histopathology and heat shock protein expression analyses on surgical tissue samples from nine patients who had been implanted with icEEG electrodes. Three patients underwent icEEG-fMRI and structural MRI (sMRI); three underwent sMRI only, all at similar time points after icEEG implantation; and three who did not undergo functional or sMRI with icEEG electrodes. RESULTS: The histopathological findings from the three patients who underwent icEEG-fMRI were similar to those who did not, in that they showed no evidence of additional damage in the vicinity of the electrodes, compared to cases who had no MRI with implanted icEEG electrodes. This finding was similar to our observations in patients who only underwent sMRI with implanted icEEG electrodes. CONCLUSION: This work provides unique evidence on the safety of functional MRI in the presence of implanted EEG electrodes. In the cases studied, icEEG-fMRI performed in accordance with our protocol based on low-SAR (≤0.1 W/kg) sequences at 1.5T using a head-transmit RF coil, did not result in measurable additional damage to the brain tissue in the vicinity of implanted electrodes. Furthermore, while one cannot generalize the results of this study beyond the specific electrode implantation and scanning conditions described herein, we submit that our approach is a useful framework for the post-hoc safety assessment of MR scanning with brain implants

    Localizing ECoG electrodes on the cortical anatomy without post-implantation imaging

    Get PDF
    AbstractIntroductionElectrocorticographic (ECoG) grids are placed subdurally on the cortex in people undergoing cortical resection to delineate eloquent cortex. ECoG signals have high spatial and temporal resolution and thus can be valuable for neuroscientific research. The value of these data is highest when they can be related to the cortical anatomy. Existing methods that establish this relationship rely either on post-implantation imaging using computed tomography (CT), magnetic resonance imaging (MRI) or X-Rays, or on intra-operative photographs. For research purposes, it is desirable to localize ECoG electrodes on the brain anatomy even when post-operative imaging is not available or when intra-operative photographs do not readily identify anatomical landmarks.MethodsWe developed a method to co-register ECoG electrodes to the underlying cortical anatomy using only a pre-operative MRI, a clinical neuronavigation device (such as BrainLab VectorVision), and fiducial markers. To validate our technique, we compared our results to data collected from six subjects who also had post-grid implantation imaging available. We compared the electrode coordinates obtained by our fiducial-based method to those obtained using existing methods, which are based on co-registering pre- and post-grid implantation images.ResultsOur fiducial-based method agreed with the MRI–CT method to within an average of 8.24mm (mean, median=7.10mm) across 6 subjects in 3 dimensions. It showed an average discrepancy of 2.7mm when compared to the results of the intra-operative photograph method in a 2D coordinate system. As this method does not require post-operative imaging such as CTs, our technique should prove useful for research in intra-operative single-stage surgery scenarios.To demonstrate the use of our method, we applied our method during real-time mapping of eloquent cortex during a single-stage surgery. The results demonstrated that our method can be applied intra-operatively in the absence of post-operative imaging to acquire ECoG signals that can be valuable for neuroscientific investigations

    What event-related potentials (ERPs) bring to social neuroscience?

    Get PDF
    Social cognitive neuroscience is a recent interdisciplinary field that studies the neural basis of the social mind. Event-related potentials (ERPs) provide precise information about the time dynamics of the brain. In this study, we assess the role of ERPs in cognitive neuroscience, particularly in the emerging area of social neuroscience. First, we briefly introduce the technique of ERPs. Subsequently, we describe several ERP components (P1, N1, N170, vertex positive potential, early posterior negativity, N2, P2, P3, N400, N400-like, late positive complex, late positive potential, P600, error-related negativity, feedback error-related negativity, contingent negative variation, readiness potential, lateralized readiness potential, motor potential, re-afferent potential) that assess perceptual, cognitive, and motor processing. Then, we introduce ERP studies in social neuroscience on contextual effects on speech, emotional processing, empathy, and decision making. We provide an outline of ERPs' relevance and applications in the field of social cognitive neuroscience. We also introduce important methodological issues that extend classical ERP research, such as intracranial recordings (iERP) and source location in dense arrays and simultaneous functional magnetic resonance imaging recordings. Further, this review discusses possible caveats of the ERP question assessment on neuroanatomical areas, biophysical origin, and methodological problems, and their relevance to explanatory pluralism and multilevel, contextual, and situated approaches to social neuroscience.Fil: Ibañez, Agustin Mariano. Universidad Diego Portales; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Melloni, Margherita. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Huepe, David. Universidad Diego Portales; ChileFil: Helgiu, Elena. Harvard University; Estados UnidosFil: Rivera Rei, Alvaro. Universidad Diego Portales; ChileFil: Canales Johnson, Andrés. Universidad Diego Portales; ChileFil: Baker, Phil. Universidad Favaloro; ArgentinaFil: Moya, Alvaro. Universidad Favaloro; Argentin
    corecore