15 research outputs found

    Review of Distributed Beamforming, Journal of Telecommunications and Information Technology, 2011, nr 1

    Get PDF
    As the capabilities of individual nodes in wireless sensor networks increase, so does the opportunity to perform more complicated tasks, such as cooperative distributed beam- forming to improve the range of communications and save precious battery power during the transmission. This work presents a review of the current literature focused on implementing distributed beamformers; covering the calculation of ideal beamforming weights, practical considerations such as carrier alignment, smart antennas based on distributed beamformers, and open research problems in the field of distributed beamforming

    Acoustic Echo Estimation using the model-based approach with Application to Spatial Map Construction in Robotics

    Get PDF

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Collaborative beamforming schemes for wireless sensor networks with energy harvesting capabilities

    Get PDF
    In recent years, wireless sensor networks have attracted considerable attention in the research community. Their development, induced by technological advances in microelectronics, wireless networking and battery fabrication, is mainly motivated by a large number of possible applications such as environmental monitoring, industrial process control, goods tracking, healthcare applications, to name a few. Due to the unattended nature of wireless sensor networks, battery replacement can be either too costly or simply not feasible. In order to cope with this problem and prolong the network lifetime, energy efficient data transmission protocols have to be designed. Motivated by this ultimate goal, this PhD dissertation focuses on the design of collaborative beamforming schemes for wireless sensor networks with energy harvesting capabilities. On the one hand, by resorting to collaborative beamforming, sensors are able to convey a common message to a distant base station, in an energy efficient fashion. On the other, sensor nodes with energy harvesting capabilities promise virtually infinite network lifetime. Nevertheless, in order to realize collaborative beamforming, it is necessary that sensors align their transmitted signals so that they are coherently combined at the destination. Moreover, sensor nodes have to adapt their transmissions according to the amounts of harvested energy over time. First, this dissertation addresses the scenario where two sensor nodes (one of them capable of harvesting ambient energy) collaboratively transmit a common message to a distant base station. In this setting, we show that the optimal power allocation policy at the energy harvesting sensor can be computed independently (i.e., without the knowledge of the optimal policy at the battery operated one). Furthermore, we propose an iterative algorithm that allows us to compute the optimal policy at the battery operated sensor, as well. The insights gained by the aforementioned scenario allow us to generalize the analysis to a system with multiple energy harvesting sensors. In particular, we develop an iterative algorithm which sequentially optimizes the policies for all the sensors until some convergence criterion is satisfied. For the previous scenarios, this PhD dissertation evaluates the impact of total energy harvested, number of sensors and limited energy storage capacity on the system performance. Finally, we consider some practical schemes for carrier synchronization, required in order to implement collaborative beamforming in wireless sensor networks. To that end, we analyze two algorithms for decentralized phase synchronization: (i) the one bit of feedback algorithm previously proposed in the literature; and (ii) a decentralized phase synchronization algorithm that we propose. As for the former, we analyze the impact of additive noise on the beamforming gain and algorithm鈥檚 convergence properties, and, subsequently, we propose a variation that performs sidelobe control. As for the latter, the sensors are allowed to choose their respective training timeslots randomly, relieving the base station of the burden associated with centralized coordination. In this context, this PhD dissertation addresses the impact of number of timeslots and additive noise on the achieved received signal strength and throughputEn los 煤ltimos a帽os, las redes de sensores inal谩mbricas han atra铆do considerable atenci贸n en la comunidad investigadora. Su desarrollo, impulsado por recientes avances tecnol贸gicos en microelectr贸nica y radio comunicaciones, est谩 motivado principalmente por un gran abanico de aplicaciones, tales como: Monitorizaci贸n ambiental, control de procesos industriales, seguimiento de mercanc铆as, telemedicina, entre otras. En las redes de sensores inal谩mbricas, es primordial el dise帽o de protocolos de transmisi贸n energ茅ticamente eficientes ya que no se contempla el reemplazo de bater铆as debido a su coste y/o complejidad. Motivados por esta problem谩tica, esta tesis doctoral se centra en el dise帽o de esquemas de conformaci贸n de haz distribuidos para redes de sensores, en el que los nodos son capaces de almacenar energ铆a del entorno, lo que en ingl茅s se denomina energy harvesting. En primer lugar, esta tesis doctoral aborda el escenario en el que dos sensores (uno de ellos capaz de almacenar energ铆a del ambiente) transmiten conjuntamente un mensaje a una estaci贸n base. En este contexto, se demuestra que la pol铆tica de asignaci贸n de potencia 贸ptima en el sensor con energy harvesting puede ser calculada de forma independiente (es decir, sin el conocimiento de la pol铆tica 贸ptima del otro sensor). A continuaci贸n, se propone un algoritmo iterativo que permite calcular la pol铆tica 贸ptima en el sensor que funciona con bater铆as. Este esquema es posteriormente generalizado para el caso de m煤ltiples sensores. En particular, se desarrolla un algoritmo iterativo que optimiza las pol铆ticas de todos los sensores secuencialmente. Para los escenarios anteriormente mencionados, esta tesis eval煤a el impacto de la energ铆a total cosechada, n煤mero de sensores y la capacidad de la bater铆a. Por 煤ltimo, se aborda el problema de sincronizaci贸n de fase en los sensores con el fin de poder realizar la conformaci贸n de haz de forma distribuida. Para ello, se analizan dos algoritmos para la sincronizaci贸n de fase descentralizados: (i) el algoritmo "one bit of feedback" previamente propuesto en la literatura, y (ii) un algoritmo de sincronizaci贸n de fase descentralizado que se propone en esta tesis. En el primer caso, se analiza el impacto del ruido aditivo en la ganancia y la convergencia del algoritmo. Adem谩s, se propone una variaci贸n que realiza el control de l贸bulos secundarios. En el segundo esquema, los sensores eligen intervalos de tiempo de forma aleatoria para transmitir y posteriormente reciben informaci贸n de la estaci贸n base para ajustar sus osciladores. En este escenario, esta tesis doctoral aborda el impacto del n煤mero de intervalos de tiempo y el ruido aditivo sobre la ganancia de conformaci贸n

    Distributed synchronization algorithms for wireless sensor networks

    Get PDF
    The ability to distribute time and frequency among a large population of interacting agents is of interest for diverse disciplines, inasmuch as it enables to carry out complex cooperative tasks. In a wireless sensor network (WSN), time/frequency synchronization allows the implementation of distributed signal processing and coding techniques, and the realization of coordinated access to the shared wireless medium. Large multi-hop WSN\u27s constitute a new regime for network synchronization, as they call for the development of scalable, fully distributed synchronization algorithms. While most of previous research focused on synchronization at the application layer, this thesis considers synchronization at the lowest layers of the communication protocol stack of a WSN, namely the physical and the medium access control (MAC) layer. At the physical layer, the focus is on the compensation of carrier frequency offsets (CFO), while time synchronization is studied for application at the MAC layer. In both cases, the problem of realizing network-wide synchronization is approached by employing distributed clock control algorithms based on the classical concept of coupled phase and frequency locked loops (PLL and FLL). The analysis takes into account communication, signaling and energy consumption constraints arising in the novel context of multi-hop WSN\u27s. In particular, the robustness of the algorithms is checked against packet collision events, infrequent sync updates, and errors introduced by different noise sources, such as transmission delays and clock frequency instabilities. By observing that WSN\u27s allow for greater flexibility in the design of the synchronization network architecture, this work examines also the relative merits of both peer-to-peer (mutually coupled - MC) and hierarchical (master-slave - MS) architectures. With both MC and MS architectures, synchronization accuracy degrades smoothly with the network size, provided that loop parameters are conveniently chosen. In particular, MS topologies guarantee faster synchronization, but they are hindered by higher noise accumulation, while MC topologies allow for an almost uniform error distribution at the price of much slower convergence. For all the considered cases, synchronization algorithms based on adaptive PLL and FLL designs are shown to provide robust and scalable network-wide time and frequency distribution in a WSN

    Wireless wire - ultra-low-power and high-data-rate wireless communication systems

    Get PDF
    With the rapid development of communication technologies, wireless personal-area communication systems gain momentum and become increasingly important. When the market gets gradually saturated and the technology becomes much more mature, new demands on higher throughput push the wireless communication further into the high-frequency and high-data-rate direction. For example, in the IEEE 802.15.3c standard, a 60-GHz physical layer is specified, which occupies the unlicensed 57 to 64 GHz band and supports gigabit links for applications such as wireless downloading and data streaming. Along with the progress, however, both wireless protocols and physical systems and devices start to become very complex. Due to the limited cut-off frequency of the technology and high parasitic and noise levels at high frequency bands, the power consumption of these systems, especially of the RF front-ends, increases significantly. The reason behind this is that RF performance does not scale with technology at the same rate as digital baseband circuits. Based on the challenges encountered, the wireless-wire system is proposed for the millimeter wave high-data-rate communication. In this system, beamsteering directional communication front-ends are used, which confine the RF power within a narrow beam and increase the level of the equivalent isotropic radiation power by a factor equal to the number of antenna elements. Since extra gain is obtained from the antenna beamsteering, less front-end gain is required, which will reduce the power consumption accordingly. Besides, the narrow beam also reduces the interference level to other nodes. In order to minimize the system average power consumption, an ultra-low power asynchronous duty-cycled wake-up receiver is added to listen to the channel and control the communication modes. The main receiver is switched on by the wake-up receiver only when the communication is identified while in other cases it will always be in sleep mode with virtually no power consumed. Before transmitting the payload, the event-triggered transmitter will send a wake-up beacon to the wake-up receiver. As long as the wake-up beacon is longer than one cycle of the wake-up receiver, it can be captured and identified. Furthermore, by adopting a frequency-sweeping injection locking oscillator, the wake-up receiver is able to achieve good sensitivity, low latency and wide bandwidth simultaneously. In this way, high-data-rate communication can be achieved with ultra-low average power consumption. System power optimization is achieved by optimizing the antenna number, data rate, modulation scheme, transceiver architecture, and transceiver circuitries with regards to particular application scenarios. Cross-layer power optimization is performed as well. In order to verify the most critical elements of this new approach, a W-band injection-locked oscillator and the wake-up receiver have been designed and implemented in standard TSMC 65-nm CMOS technology. It can be seen from the measurement results that the wake-up receiver is able to achieve about -60 dBm sensitivity, 10 mW peak power consumption and 8.5 碌s worst-case latency simultaneously. When applying a duty-cycling scheme, the average power of the wake-up receiver becomes lower than 10 碌W if the event frequency is 1000 times/day, which matches battery-based or energy harvesting-based wireless applications. A 4-path phased-array main receiver is simulated working with 1 Gbps data rate and on-off-keying modulation. The average power consumption is 10 碌W with 10 Gb communication data per day

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Enhancing the performance of spread spectrum techniques in different applications

    Get PDF
    Spread spectrum, Automotive Radar, Indoor Positioning Systems, Ultrasonic and Microwave Imaging, super resolution technique and wavelet transformMagdeburg, Univ., Fak. f眉r Elektrotechnik und Informationstechnik, Diss., 2006von Omar Abdel-Gaber Mohamed Al
    corecore