7 research outputs found

    Stabilization Control of the Differential Mobile Robot Using Lyapunov Function and Extended Kalman Filter

    Get PDF
    This paper presents the design of a control model to navigate the differential mobile robot to reach the desired destination from an arbitrary initial pose. The designed model is divided into two stages: the state estimation and the stabilization control. In the state estimation, an extended Kalman filter is employed to optimally combine the information from the system dynamics and measurements. Two Lyapunov functions are constructed that allow a hybrid feedback control law to execute the robot movements. The asymptotical stability and robustness of the closed loop system are assured. Simulations and experiments are carried out to validate the effectiveness and applicability of the proposed approach.Comment: arXiv admin note: text overlap with arXiv:1611.07112, arXiv:1611.0711

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Feedback-based Information Roadmap (FIRM): Graph-based Estimation and Control of Robotic Systems Under Uncertainty

    Get PDF
    This dissertation addresses the problem of stochastic optimal control with imperfect measurements. The main application of interest is robot motion planning under uncertainty. In the presence of process uncertainty and imperfect measurements, the system's state is unknown and a state estimation module is required to provide the information-state (belief), which is the probability distribution function (pdf) over all possible states. Accordingly, successful robot operation in such a setting requires reasoning about the evolution of information-state and its quality in future time steps. In its most general form, this is modeled as a Partially-Observable Markov Decision Process (POMDP) problem. Unfortunately, however, the exact solution of this problem over continuous spaces in the presence of constraints is computationally intractable. Correspondingly, state-of-the-art methods that provide approximate solutions are limited to problems with short horizons and small domains. The main challenge for these problems is the exponential growth of the search tree in the information space, as well as the dependency of the entire search tree on the initial belief. Inspired by sampling-based (roadmap-based) methods, this dissertation proposes a method to construct a "graph" in information space, called Feedback-based Information RoadMap (FIRM). Each FIRM node is a probability distribution and each FIRM edge is a local controller. The concept of belief stabilizers is introduced as a way to steer the current belief toward FIRM nodes and induce belief reachability. The solution provided by the FIRM framework is a feedback law over the information space, which is obtained by switching among locally distributed feedback controllers. Exploiting such a graph in planning, the intractable POMDP problem over continuous spaces is reduced to a tractable MDP (Markov Decision Process) problem over the graph (FIRM) nodes. FIRM is the first graph generated in the information space that preserves the principle of optimality, i.e., the costs associated with different edges of FIRM are independent of each other. Unlike the forward search methods on tree-structures, the plans produced by FIRM are independent of the initial belief (i.e., plans are query-independent). As a result, they are robust and reliable. They are robust in the sense that if the system's belief deviates from the planned belief, then replanning is feasible in real-time, as the computed solution is a feedback over the entire belief graph. Computed plans are reliable in the sense that the probability of violating constraints (e.g., hitting obstacles) can be seamlessly incorporated into the planning law. Moreover, FIRM is a scalable framework, as the computational complexity of its construction is linear in the size of underlying graph as opposed to state-of-the-art methods whose complexity is exponential in the size of underlying graph. In addition to the abstract framework, we present concrete FIRM instantiations for three main classes of robotic systems: holonomic, nonholonomic, and non-pointstabilizable. The abstract framework opens new avenues for extending FIRM to a broader class of systems that are not considered in this dissertation. This includes systems with discrete dynamics or in general systems that are not well-linearizable, systems with non-Gaussian distributions, and systems with unobservable modes. In addition to the abstract framework and concrete instantiations of it, we propose a formal technique for replanning with FIRM based on a rollout-policy algorithm to handle changes in the environment as well as discrepancies between actual and computational models. We demonstrate the performance of the proposed motion planning method on different robotic systems, both in simulation and on physical systems. In the problems we consider, the system is subject to motion and sensing noise. Our results demonstrate a significant advance over existing approaches for motion planning in information space. We believe the proposed framework takes an important step toward making information space planners applicable to real world robotic applications

    Design and analysis of Intelligent Navigational controller for Mobile Robot

    Get PDF
    Since last several years requirement graph for autonomous mobile robots according to its virtual application has always been an upward one. Smother and faster mobile robots navigation with multiple function are the necessity of the day. This research is based on navigation system as well as kinematics model analysis for autonomous mobile robot in known environments. To execute and attain introductory robotic behaviour inside environments(e.g. obstacle avoidance, wall or edge following and target seeking) robot uses method of perception, sensor integration and fusion. With the help of these sensors robot creates its collision free path and analyse an environmental map time to time. Mobile robot navigation in an unfamiliar environment can be successfully studied here using online sensor fusion and integration. Various AI algorithm are used to describe overall procedure of mobilerobot navigation and its path planning problem. To design suitable controller that create collision free path are achieved by the combined study of kinematics analysis of motion as well as an artificial intelligent technique. In fuzzy logic approach, a set of linguistic fuzzy rules are generated for navigation of mobile robot. An expert controller has been developed for the navigation in various condition of environment using these fuzzy rules. Further, type-2 fuzzy is employed to simplify and clarify the developed control algorithm more accurately due to fuzzy logic limitations. In addition, recurrent neural network (RNN) methodology has been analysed for robot navigation. Which helps the model at the time of learning stage. The robustness of controller has been checked on Webots simulation platform. Simulation results and performance of the controller using Webots platform show that, the mobile robot is capable for avoiding obstacles and reaching the termination point in efficient manner

    Vision based navigation in a dynamic environment

    Get PDF
    Cette thèse s'intéresse au problème de la navigation autonome au long cours de robots mobiles à roues dans des environnements dynamiques. Elle s'inscrit dans le cadre du projet FUI Air-Cobot. Ce projet, porté par Akka Technologies, a vu collaborer plusieurs entreprises (Akka, Airbus, 2MORROW, Sterela) ainsi que deux laboratoires de recherche, le LAAS et Mines Albi. L'objectif est de développer un robot collaboratif (ou cobot) capable de réaliser l'inspection d'un avion avant le décollage ou en hangar. Différents aspects ont donc été abordés : le contrôle non destructif, la stratégie de navigation, le développement du système robotisé et de son instrumentation, etc. Cette thèse répond au second problème évoqué, celui de la navigation. L'environnement considéré étant aéroportuaire, il est hautement structuré et répond à des normes de déplacement très strictes (zones interdites, etc.). Il peut être encombré d'obstacles statiques (attendus ou non) et dynamiques (véhicules divers, piétons, ...) qu'il conviendra d'éviter pour garantir la sécurité des biens et des personnes. Cette thèse présente deux contributions. La première porte sur la synthèse d'un asservissement visuel permettant au robot de se déplacer sur de longues distances (autour de l'avion ou en hangar) grâce à une carte topologique et au choix de cibles dédiées. De plus, cet asservissement visuel exploite les informations fournies par toutes les caméras embarquées. La seconde contribution porte sur la sécurité et l'évitement d'obstacles. Une loi de commande basée sur les spirales équiangulaires exploite seulement les données sensorielles fournies par les lasers embarqués. Elle est donc purement référencée capteur et permet de contourner tout obstacle, qu'il soit fixe ou mobile. Il s'agit donc d'une solution générale permettant de garantir la non collision. Enfin, des résultats expérimentaux, réalisés au LAAS et sur le site d'Airbus à Blagnac, montrent l'efficacité de la stratégie développée.This thesis is directed towards the autonomous long range navigation of wheeled robots in dynamic environments. It takes place within the Air-Cobot project. This project aims at designing a collaborative robot (cobot) able to perform the preflight inspection of an aircraft. The considered environment is then highly structured (airport runway and hangars) and may be cluttered with both static and dynamic unknown obstacles (luggage or refueling trucks, pedestrians, etc.). Our navigation framework relies on previous works and is based on the switching between different control laws (go to goal controller, visual servoing, obstacle avoidance) depending on the context. Our contribution is twofold. First of all, we have designed a visual servoing controller able to make the robot move over a long distance thanks to a topological map and to the choice of suitable targets. In addition, multi-camera visual servoing control laws have been built to benefit from the image data provided by the different cameras which are embedded on the Air-Cobot system. The second contribution is related to obstacle avoidance. A control law based on equiangular spirals has been designed to guarantee non collision. This control law, based on equiangular spirals, is fully sensor-based, and allows to avoid static and dynamic obstacles alike. It then provides a general solution to deal efficiently with the collision problem. Experimental results, performed both in LAAS and in Airbus hangars and runways, show the efficiency of the developed techniques

    公共空間における移動サービスの実現に向けた知能化移動プラットフォームの開発

    Get PDF
    本研究は,自律移動パーソナルヴィークルによる多様な移動サービス研究を行うための移動プラットフォーム開発に関するものである.現在,多くの研究機関で自律移動システムの研究が行われているが,それが送迎サービス等の実用的な移動サービスアプリケーションの研究開発まで至った例は多くない.これは,それらの研究で利用されている市販の移動プラットフォームや研究用プラットフォームでは,移動サービスアプリケーションの研究開発が容易でないことが要因の一つとなっている.また個々のパーソナルヴィークルのロボット化技術やナビゲーション機能の研究成果が共有できていない面が有り,移動サービス研究に耐えうる移動プラットフォームが構築できていないことも一つの要因であると考えられる.本研究では,上記の問題を解決するため,様々な移動サービスアプリケーション開発が行え,様々な移動サービスに関する研究成果を利用することが可能な仕組みを持ち,さらに基本的なナビゲーション機能を備える「知能化移動プラットフォーム」のシステム構成を文献調査や事例研究により明らかにした.またそれに基づき実際に知能化移動プラットフォームを構築し,その有用性を実証するとともにその構築方法についても明示した.第二章では,知能化移動プラットフォームに求められるシステム要件を設定し,関連研究・文献調査(829件)・「つくばチャレンジ」などの実証実験の事例観察からシステム要件を満たす知能化移動プラットフォームのシステム構成を明らかにした.第三章では,提案したシステム構成について,背景で述べた問題点を解決する評価指標を設定し,関連する研究事例や市販の移動プラットフォームと比較することで優位性を示した.第四章では,提案したシステム構成に基づき,使用場面に応じた二つの知能化移動プラットフォームを開発した.一つ目として屋外での移動サービスを想定し,所属研究室でこれまで開発されてきた走行性能が高い電動カートをベースとしたプラットフォーム開発を行った.基本ナビゲーション機能には当研究室での共同研究成果を搭載した.動作検証を学内及びつくばロボット特区で行い約1㎞以上の自律走行能力を有していることを確認し,提案したシステム構成が有効であることを確認した.二つ目として屋内外でシームレスな移動サービスを想定して,屋内における移動性能を重視した車椅子ベースの知能化移動プラットフォームを開発した.上記と同様のコンセプトで開発し学内において同様の動作検証を行いその自律走行能力を確認した.第五章では,開発した知能化移動プラットフォームを用いた移動サービスに関する研究成果(文献11件)に関して,設定したシステム要件を満たす実装がどのようにそれらの研究実績に繋がった考察を行い,設定したシステム要件と提案したシステム構成が有効であることを確認した.本研究の成果は,様々な移動サービス研究に用いることのできる移動プラットフォームのシステム要件を明らかにし,その構築に有効なシステム構成を示したこと,および実際に移動プラットフォームを開発し,その有用性を実際に示したことである.またその開発過程で述べたハードウェア及びソフトウェアのそれぞれに関する実装そのものも有効な知見として述べた.上記の成果は,多くの研究機関が移動サービス研究に従事するにあたり移動プラットフォーム開発の指針とすることができ,今後,移動サービス実現に向けて該当分野の研究がより推進されることが期待できる.電気通信大学201

    Localization of a unicycle-like mobile robot using LRF and omni-directional camera

    No full text
    corecore