401 research outputs found

    Localization in Long-range Ultra Narrow Band IoT Networks using RSSI

    Full text link
    Internet of things wireless networking with long range, low power and low throughput is raising as a new paradigm enabling to connect trillions of devices efficiently. In such networks with low power and bandwidth devices, localization becomes more challenging. In this work we take a closer look at the underlying aspects of received signal strength indicator (RSSI) based localization in UNB long-range IoT networks such as Sigfox. Firstly, the RSSI has been used for fingerprinting localization where RSSI measurements of GPS anchor nodes have been used as landmarks to classify other nodes into one of the GPS nodes classes. Through measurements we show that a location classification accuracy of 100% is achieved when the classes of nodes are isolated. When classes are approaching each other, our measurements show that we can still achieve an accuracy of 85%. Furthermore, when the density of the GPS nodes is increasing, we can rely on peer-to-peer triangulation and thus improve the possibility of localizing nodes with an error less than 20m from 20% to more than 60% of the nodes in our measurement scenario. 90% of the nodes is localized with an error of less than 50m in our experiment with non-optimized anchor node locations.Comment: Accepted in ICC 17. To be presented in IEEE International Conference on Communications (ICC), Paris, France, 201

    Technologies and solutions for location-based services in smart cities: past, present, and future

    Get PDF
    Location-based services (LBS) in smart cities have drastically altered the way cities operate, giving a new dimension to the life of citizens. LBS rely on location of a device, where proximity estimation remains at its core. The applications of LBS range from social networking and marketing to vehicle-toeverything communications. In many of these applications, there is an increasing need and trend to learn the physical distance between nearby devices. This paper elaborates upon the current needs of proximity estimation in LBS and compares them against the available Localization and Proximity (LP) finding technologies (LP technologies in short). These technologies are compared for their accuracies and performance based on various different parameters, including latency, energy consumption, security, complexity, and throughput. Hereafter, a classification of these technologies, based on various different smart city applications, is presented. Finally, we discuss some emerging LP technologies that enable proximity estimation in LBS and present some future research areas

    Integrated Satellite-terrestrial networks for IoT: LoRaWAN as a Flying Gateway

    Get PDF
    When the Internet of Things (IoT) was introduced, it causes an immense change in human life. Recently, different IoT emerging use cases, which will involve an even higher number of connected devices aimed at collecting and sending data with different purposes and over different application scenarios, such as smart city, smart factory, and smart agriculture. In some cases, the terrestrial infrastructure is not enough to guarantee the typical performance indicators due to its design and intrinsic limitations. Coverage is an example, where the terrestrial infrastructure is not able to cover certain areas such as remote and rural areas. Flying technologies, such as communication satellites and Unmanned Aerial Vehicles (UAVs), can contribute to overcome the limitations of the terrestrial infrastructure, offering wider coverage, higher resilience and availability, and improving user\u2019s Quality of Experience (QoE). IoT can benefit from the UAVs and satellite integration in many ways, also beyond the coverage extension and the increase of the available bandwidth that these objects can offer. This thesis proposes the integration of both IoT and UAVs to guarantee the increased coverage in hard to reach and out of coverage areas. Its core focus addresses the development of the IoT flying gateway and data mule and testing both approaches to show their feasibility. The first approach for the integration of IoT and UAV results in the implementing of LoRa flying gateway with the aim of increasing the IoT communication protocols\u2019 coverage area to reach remote and rural areas. This flying gateway examines the feasibility for extending the coverage in a remote area and transmitting the data to the IoT cloud in real-time. Moreover, it considers the presence of a satellite between the gateway and the final destination for areas with no Internet connectivity and communication means such as WiFi, Ethernet, 4G, or LTE. The experimental results have shown that deploying a LoRa gateway on board a flying drone is an ideal option for the extension of the IoT network coverage in rural and remote areas. The second approach for the integration of the aforementioned technologies is the deployment of IoT data mule concept for LoRa networks. The difference here is the storage of the data on board of the gateway and not transmitting the data to the IoT cloud in real time. The aim of this approach is to receive the data from the LoRa sensors installed in a remote area, store them in the gateway up until this flying gateway is connected to the Internet. The experimental results have shown the feasibility of our flying data mule in terms of signal quality, data delivery, power consumption and gateway status. The third approach considers the security aspect in LoRa networks. The possible physical attacks that can be performed on any LoRa device can be performed once its location is revealed. Position estimation was carried out using one of the LoRa signal features: RSSI. The values of RSSI are fed to the Trilateration localization algorithm to estimate the device\u2019s position. Different outdoor tests were done with and without the drone, and the results have shown that RSSI is a low cost option for position estimation that can result in a slight error due to different environmental conditions that affect the signal quality. In conclusion, by adopting both IoT technology and UAV, this thesis advances the development of flying LoRa gateway and LoRa data mule for the aim of increasing the coverage of LoRa networks to reach rural and remote areas. Moreover, this research could be considered as the first step towards the development of high quality and performance LoRa flying gateway to be tested and used in massive LoRa IoT networks in rural and remote areas

    Outdoor node localization using random neural networks for large-scale urban IoT LoRa networks

    Get PDF
    Accurate localization for wireless sensor end devices is critical, particularly for Internet of Things (IoT) location-based applications such as remote healthcare, where there is a need for quick response to emergency or maintenance services. Global Positioning Systems (GPS) are widely known for outdoor localization services; however, high-power consumption and hardware cost become a significant hindrance to dense wireless sensor networks in large-scale urban areas. Therefore, wireless technologies such as Long-Range Wide-Area Networks (LoRaWAN) are being investigated in different location-aware IoT applications due to having more advantages with low-cost, long-range, and low-power characteristics. Furthermore, various localization methods, including fingerprint localization techniques, are present in the literature but with different limitations. This study uses LoRaWAN Received Signal Strength Indicator (RSSI) values to predict the unknown X and Y position coordinates on a publicly available LoRaWAN dataset for Antwerp in Belgium using Random Neural Networks (RNN). The proposed localization system achieves an improved high-level accuracy for outdoor dense urban areas and outperforms the present conventional LoRa-based localization systems in other work, with a minimum mean localization error of 0.29 m

    GNSS-free outdoor localization techniques for resource-constrained IoT architectures : a literature review

    Get PDF
    Large-scale deployments of the Internet of Things (IoT) are adopted for performance improvement and cost reduction in several application domains. The four main IoT application domains covered throughout this article are smart cities, smart transportation, smart healthcare, and smart manufacturing. To increase IoT applicability, data generated by the IoT devices need to be time-stamped and spatially contextualized. LPWANs have become an attractive solution for outdoor localization and received significant attention from the research community due to low-power, low-cost, and long-range communication. In addition, its signals can be used for communication and localization simultaneously. There are different proposed localization methods to obtain the IoT relative location. Each category of these proposed methods has pros and cons that make them useful for specific IoT systems. Nevertheless, there are some limitations in proposed localization methods that need to be eliminated to meet the IoT ecosystem needs completely. This has motivated this work and provided the following contributions: (1) definition of the main requirements and limitations of outdoor localization techniques for the IoT ecosystem, (2) description of the most relevant GNSS-free outdoor localization methods with a focus on LPWAN technologies, (3) survey the most relevant methods used within the IoT ecosystem for improving GNSS-free localization accuracy, and (4) discussion covering the open challenges and future directions within the field. Some of the important open issues that have different requirements in different IoT systems include energy consumption, security and privacy, accuracy, and scalability. This paper provides an overview of research works that have been published between 2018 to July 2021 and made available through the Google Scholar database.5311-8814-F0ED | Sara Maria da Cruz Maia de Oliveira PaivaN/

    Diseño y aplicaciones de sistemas de antenas inteligentes para redes inalámbricas en el contexto de la internet de las cosas

    Get PDF
    [SPA] Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones. Las antenas de onda de fuga (LWA) consisten en una estructura de guía de onda que permite la fuga de parte de la potencia a lo largo de la estructura. Por esta razón, la radiación de la antena se produce por la fuga de energía. Para producir una radiación coherente, es necesario controlar esta tasa de radiación a lo largo de la estructura radiante. Así, ajustando con precisión la tasa de radiación, se controla la forma del diagrama de radiación. Las LWAs han sido ampliamente estudiadas por la comunidad científica debido a sus ventajas, tales como, red de alimentación simple, alta directividad y escaneo en frecuencia pasivo. Sin embargo, presentan ciertas desventajas entre las cuales, la más importante a destacar es el efecto de beam-squinting. Éste se produce por la propiedad dispersiva inherente a este tipo de antenas. Además, presentan dificultades a la hora de generar radiación coherente en las direcciones broadside y endfire, aumentando la complejidad del diseńo para la radiación en dichas direcciones. Las LWA han sido relativamente poco utilizadas en aplicaciones prácticas hasta la fecha, a pesar de sus ventajas. Las pocas aplicaciones en las que se han utilizado son los radares de onda continua modulada en frecuencia y los sistemas de enfoque controlado en frecuencia de campo cercano. Esta tesis propone el uso de las LWAs en aplicaciones prácticas aprovechando las ventajas mencionadas anteriormente y teniendo en cuenta los inconvenientes de este tipo de antenas para que su uso no sea limitado. Recientemente, las LWAs han sido propuestas para aplicaciones de localización de bajo coste, ya que permiten el diseńo de estructuras planas con haces directivos. Además, debido al aumento exponencial del uso de la tecnología, es necesario encontrar nuevas tecnologías para una transmisión de datos mayor, más rápida y más eficiente, manteniendo bajos costes de fabricación. Por lo tanto las LWAs pueden ser una solución crucial al mezclar bajos costes de fabricación, alta integrabilidad en diferentes sistemas debido a su tecnología impresa planar y alta directividad al mismo tiempo que se aprovecha su característica dispersiva que proporciona un escaneo pasivo en frecuencia. En este contexto, la principal aportación de esta Tesis consiste en el estudio, análisis, diseńo e integración de LWAs en aplicaciones reales y prácticas. Esta Tesis presenta las siguientes tres contribuciones principales, definidas en los tres bloques principales de este documento: • Estudio y análisis de LWAs para su uso en sistemas de estimación de dirección de llegada basados en técnicas de amplitud de monopulso. Comparar las características y prestaciones de las LWAs junto con las antenas comerciales más utilizadas. Para ello, diseńar y fabricar las HWM-LWAs con el fin de comparar sus prestaciones con las antenas de panel adquiridas comercialmente. Dado que cada aplicación requiere el diseńo de una HWM-LWA nueva y diferente, estudiar y proponer una técnica eficiente de análisis y diseńo de antenas para obtener fácilmente diagramas de radiación monopulso escaneados en frecuencia. • Una vez analizado que las HWM-LWA son una solución factible para su uso en aplicaciones reales de localización debido a sus diversas ventajas. Integrar las HWM-LWAs diseńadas en sistemas digitales para estimación del ángulo de llegada en interiores. Por lo tanto, diseńar, desarrollar, configurar e integrar las LWAs en diferentes sistemas basados en las bandas de frecuencia Wi-Fi ISM de 2,4 GHz y 5 GHz. Finalmente, comparar los resultados de estimación obtenidos con otras soluciones propuestas para corroborar que los LWAs pueden ser utilizados en aplicaciones reales. • Asimismo, debido a su bajo coste de fabricación y a su principal propiedad de escaneo en frecuencia. Ampliar el uso de las LWAs para la localización angular en redes de sensores inalámbricas (WSN) utilizando la banda de frecuencias UHF de 900 MHz. Utilizando así etiquetas RFID pasivas. También estudiar su aplicabilidad en WSNs utilizando etiquetas LoRa activas. Este documento se presenta como una Tesis por compendio, por lo que se presentarán y explicarán brevemente los 4 artículos de revistas que se han publicado durante el programa de doctorado. Además, también se presentarán algunos artículos de conferencias y otros trabajos en revisión para exponer algunas de las investigaciones que no han sido publicadas en revistas hasta la fecha de depósito de tesis. El documento está organizado como se indica a continuación: En la Introducción, se presenta una contextualización del estado del arte y una explicación rigurosa sobre las LWAs y las aplicaciones anteriormente mencionadas. Las dos partes siguientes se vi dedican a presentar y explicar brevemente los trabajos publicados que contribuyen a esta Tesis. En la parte II, se presentan los cuatro artículos que conforman el compendio. Esto es, el análisis de las LWAs para la estimación de la dirección del ángulo de llegada y la integración de las LWAs en sistemas de localización digital usando el protocolo Wi-Fi en el Capítulo 1, la banda de frecuencias ISM UHF 900 MHz se utiliza junto con los HWM-LWAs en el Capítulo 2, luego se implementa en un sistema en tiempo real para la estimación de la dirección de llegada de múltiples tags pasivos en el Capítulo 3 y la integración de LoRa en el Capítulo 4. Finalmente, en la Parte III, se discuten las conclusiones generales y las futuras líneas de investigación. [ENG] This doctoral dissertation has been presented in the form of thesis by publication. Leaky-Wave Antennas (LWA) consist on a waveguide structure which allows the leakage of part of the power along the structure. For this reason, the radiation of the antenna is produced by the leakage of power. In order to produce coherent radiation, it is necessary to control this leakage rate along the radiating structure. Thus, precisely adjusting the leakage rate, the shape of the radiation pattern is controlled. LWAs have been widely studied by the scientific community due to their advantages, such as, simple feeding network, high directivity and passive frequency-scanning performance. However, they present certain disadvantages among which, the most important to highlight is the beam-squinting effect. TThis is due to the inherent dispersion property of this type of antenna. In addition, LWAs present difficulties when generating coherent radiation in broadside and endfire directions, increasing the complexity of the design for radiation in these directions. LWAs have been relatively unused in practical applications to date, despite of their benefits. The few applications in which they have been used are frequency modulated continuous wave radars and near-field frequency controlled focusing systems.This thesis proposes the use of LWAs in practical applications by exploiting the advantages mentioned above while taking into account the drawbacks of this type of antennas so that their use is not limited. Recently, LWAs have been proposed for low-cost localization applications, as they allow the design of planar structures with directive beams. In addition, due to the exponential increase in the use of technology, it is necessary to find new technologies for higher, faster and more efficient data transmission while maintaining low manufacturing costs. Therefore, LWAs can be a crucial solution mixing low manufacturing costs, high integrability in different systems due to their planar printed technology and high directivity while taking advantage of their dispersive characteristic that provides passive frequency scanning. In this context, the main contribution of this Thesis consist of the study, analysis, design and integration of LWAs in real and practical applications. This Thesis presents the following three main contributions, defined in the three main blocks of this document: • Study and analysis of LWAs for its use in direction of arrival estimation systems based on monopulse amplitude techniques. Compare the characteristics and performance of LWAs along with widely used commercial antennas. For this purpose, design and manufacture the HWM-LWAs in order to compare their performance with commercially acquired panel antennas. Since each application requires the design of a new and different HWM-LWA, a main objective of this block is to study and propose an efficient antenna analysis and design technique to facilitate obtaining frequency-scanned monopulse patterns. • Once analyzed that LWAs are a feasible solution for its use in real localization applications due to their several advantages, integrate the designed half-width microstrip (HWM-LWAs) in digital indoor angle-of-arrival estimation systems. Therefore, design, develop, configure and integrate LWAs in different systems based on the Wi-Fi ISM 2.4 GHz and 5 GHz frequency bands. Finally, compare the obtained estimation results with other proposed solutions to corroborate that LWAs can be used in real applications. • Extending the use of antennas for angular localization in sensor networks using the 900 MHz UHF frequency band: the main properties of low manufacturing cost and passive frequency beam scanning can be used in other applications. Thus, the localization estimation of passive RFID tags is studied, as well as their application in Wireless Sensor Networks (WSNs) using active tags with LORA technology. This document is presented as a Thesis by compilation, so the 4 journal articles that have been published during the Ph.D program will be presented and briefly explained. Besides, some conference articles and other work under review will be also presented to expose some of the research that has not been published in journals. The document is organized as outlined hereafter: In Part I, a state-of-the-art contextualization, a rigorous explanation about LWAs and the previous applications mentioned above is presented. The next two parts are dedicated to present and briefly explain the published works included in this Thesis and their main contributions. In Part II the explanation of the four papers which compose the compendium are presented. This is, LWAs analysis for direction of arrival estimation and the integration of LWAs in digital Wi-Fi localization systems in chapter 1, the UHF 900 MHz ISM frequency band is used in conjunction with HWM-LWAs in chapter 2, then, it is implemented in a real time system for direction of arrival estimation of multi RFID tags in chapter 3 and LoRa integration in chapter 4. Finally, in Part III, the overall conclusions and the future research lines are discussed.Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones. Está formada por un total de cuatro artículos. Article 1.-: A. Gil-Martinez, M. Poveda-Garcia, J. A. Lopez-Pastor, J. C. Sanchez-Aarnoutse and J. L. Gomez-Tornero, Wi-Fi Direction Finding with Frequency-Scanned Antenna and Channel Hopping Scheme IEEE sensors Journal, , vol. 22, no. 6, pp. 5210-5222, 2022. DOI: 10.1109/JSEN.2021.3122232. Article 2.-: A. Gil-Martinez, M. Poveda-Garcia, D. Cañete-Rebenaque, and J. L. Gomez-Tornero, Frequency-Scanned Monopulse Antenna for RSSI-based Direction Finding of UHF RFID tags IEEE Antennas and Wireless Propagation Letters,, vol. 21, no. 1, pp. 158-162, 2022. DOI: 10.1109/LAWP.2021.3122232. Article 3.-: A. Gil-Martinez, M. Poveda-Garcia, J. Garcia-Fernandez, M. Campo-Valera, D. Cañete-Rebenaque, and J. L. Gomez-Tornero, Direction Finding of RFID tags in UHF Band Using a Passive Beam-Scanning Leaky-Wave Antenna IEEE Journal of Radio Frequency Identi cation, doi: 10.1109/JRFID.2021.3122233. Article 4.-: J. L. Gomez-Tornero, A. Gil-Martinez, M. Poveda-Garcia and D. Cañete-Rebenaque, ARIEL: Passive Beam-Scanning Antenna TeRminal for Iridiscent and E cient LEO Satellite Connectivity in IEEE Antennas and Wireless Propagation Letters, doi: 10.1109/LAWP.2022.3193040.Escuela Internacional de Doctorado de la Universidad Politécnica de CartagenaUniversidad Politécnica de CartagenaPrograma Doctorado en Tecnologías de la Información y las Comunicacione

    Machine learning for localization in narrowband IoT networks

    Get PDF
    Low power wide area networks (LPWANs) are designed for Internet of Things (IoT) appli- cations because of their long-range coverage, low bit rate, and low battery consumption. In the LPWAN networks, Narrow-band IoT (NB-IoT) is a type of network that uses the licensed cellular spectrum, working over the deployed LTE infrastructure. It is rising as a promising technology because of its characteristics and deployment advantages against other LPWAN networks. In NB-IoT networks, localization is an essential service for applications such as smart cities, traffic control, logistics tracking, and others. The outdoor localization is often performed using a Global Navigation Satellite System (GNSS) like Global Positioning System (GPS) to send the current device position with some meters accuracy. However, due to GPS¿s power and size drawbacks, recent reports focus on alternatives to replace GPS-based localization systems with cost and power efficient solutions. This work analyses a database collected over an NB-IoT deployed network in the city of Antwerp in Belgium and implements a solution for outdoor localization based on Machine Learning (ML) methods for distance estimation. The data analysis starts in the pre-processing step, where the databases are cleaned and prepared for the ML analysis. The following process merges and debugs the data to obtain an integrated database with classification for urban and rural areas. The localization solution performs a support vector regression, random forest regression, and a multi-layer perceptron regression using as input parameters the received signal strength indicator (RSSI) and the base station (BS) position details in order to predict the distance to the IoT nodes and estimate the current position (latitude and longitude) of them. This implementation includes hyper-parameter tuning, the train and test process, and mathematical calculations to obtain the estimated position with mean and median location estimation errors expressed in meters. The implementation of the methodology processes results in 280 and 220 meters corre- sponding to the mean and median location errors for the urban area and 920 and 570 meters for the rural area. The accuracy levels obtained in the results turn this solution suitable for the most common uses of localization in IoT instead of using a GPS device. As a result, this study proposes a new approach for localization in IoT networks. In addition to the implemented solution defines valuable research lines to improve the accuracy levels and generate more contributions to optimize the equipment resources and reduce the IoT device¿s final cost.OutgoingObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenible

    Suitability of LoRa, Sigfox and NB-IoT for Different Internet-of-Things Applications

    Get PDF
    The large-scale implementation of the internet of things (IoT) technologies is becoming a reality. IoT technologies benefit from low-power wide area network (LPWAN) systems. These technologies include Long Range (LoRa), Sigfox, and Narrowband IoT (NB-IoT). Numerous networks have already been deployed around the world, which is expected to accelerate the growth of IoT. This thesis discusses the performance of these three prominent LPWAN technologies in the market that have been specifically designed for IoT use. The main idea of LPWAN technologies is to provide wide coverage area using only small amount of base stations and to serve large amount of low-power and low-cost IoT devices. The main purpose of this thesis work is to compare LoRa, Sigfox, and NB-IoT and evaluate their suitability to various IoT applications. The appropriate technology selection is possible through in-depth analysis and technological comparison of LPWAN systems. There are many technological differences among these LPWAN technologies. A single technology may not be able to meet all requirements of all IoT applications. Therefore, some IoT applications can benefit from one technology more than others. The right selection helps in fulfilling the need of IoT application to save cost, time and improve efficiency. In addition to the literature-based suitability evaluation of the aforementioned technologies some practical measurements are performed using commercial off-the-shelf hardware. These measurements consider LoRa and Sigfox user devices in both outdoor and indoor locations. The key performance indicators obtained from the measurements are signal-to-noise ratio (SNR) and received signal strength indicator (RSSI). In addition, also penetration loss from outdoor to indoor is derived. The obtained measurement results were in line with the ones found from the literature

    Wi-Fi For Indoor Device Free Passive Localization (DfPL): An Overview

    Get PDF
    The world is moving towards an interconnected and intercommunicable network of animate and inanimate objects with the emergence of Internet of Things (IoT) concept which is expected to have 50 billion connected devices by 2020. The wireless communication enabled devices play a major role in the realization of IoT. In Malaysia, home and business Internet Service Providers (ISP) bundle Wi-Fi modems working in 2.4 GHz Industrial, Scientific and Medical (ISM) radio band with their internet services. This makes Wi-Fi the most eligible protocol to serve as a local as well as internet data link for the IoT devices. Besides serving as a data link, human entity presence and location information in a multipath rich indoor environment can be harvested by monitoring and processing the changes in the Wi-Fi Radio Frequency (RF) signals. This paper comprehensively discusses the initiation and evolution of Wi-Fi based Indoor Device free Passive Localization (DfPL) since the concept was first introduced by Youssef et al. in 2007. Alongside the overview, future directions of DfPL in line with ongoing evolution of Wi-Fi based IoT devices are briefly discussed in this paper

    LoRa scalability : a simulation model based on interference measurements

    Get PDF
    LoRa is a long-range, low power, low bit rate and single-hop wireless communication technology. It is intended to be used in Internet of Things (IoT) applications involving battery-powered devices with low throughput requirements. A LoRaWAN network consists of multiple end nodes that communicate with one or more gateways. These gateways act like a transparent bridge towards a common network server. The amount of end devices and their throughput requirements will have an impact on the performance of the LoRaWAN network. This study investigates the scalability in terms of the number of end devices per gateway of single-gateway LoRaWAN deployments. First, we determine the intra-technology interference behavior with two physical end nodes, by checking the impact of an interfering node on a transmitting node. Measurements show that even under concurrent transmission, one of the packets can be received under certain conditions. Based on these measurements, we create a simulation model for assessing the scalability of a single gateway LoRaWAN network. We show that when the number of nodes increases up to 1000 per gateway, the losses will be up to 32%. In such a case, pure Aloha will have around 90% losses. However, when the duty cycle of the application layer becomes lower than the allowed radio duty cycle of 1%, losses will be even lower. We also show network scalability simulation results for some IoT use cases based on real data
    • …
    corecore