109 research outputs found

    Real-time localization using received signal strength

    Get PDF
    Locating and tracking assets in an indoor environment is a fundamental requirement for several applications which include for instance network enabled manufacturing. However, translating time of flight-based GPS technique for indoor solutions has proven very costly and inaccurate primarily due to the need for high resolution clocks and the non-availability of reliable line of sight condition between the transmitter and receiver. In this dissertation, localization and tracking of wireless devices using radio signal strength (RSS) measurements in an indoor environment is undertaken. This dissertation is presented in the form of five papers. The first two papers deal with localization and placement of receivers using a range-based method where the Friis transmission equation is used to relate the variation of the power with radial distance separation between the transmitter and receiver. The third paper introduces the cross correlation based localization methodology. Additionally, this paper also presents localization of passive RFID tags operating at 13.56MHz frequency or less by measuring the cross-correlation in multipath noise from the backscattered signals. The fourth paper extends the cross-correlation based localization algorithm to wireless devices operating at 2.4GHz by exploiting shadow fading cross-correlation. The final paper explores the placement of receivers in the target environment to ensure certain level of localization accuracy under cross-correlation based method. The effectiveness of our localization methodology is demonstrated experimentally by using IEEE 802.15.4 radios operating in fading noise rich environment such as an indoor mall and in a laboratory facility of Missouri University of Science and Technology. Analytical performance guarantees are also included for these methods in the dissertation --Abstract, page iv

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Modeling the Behavior of Multipath Components Pertinent to Indoor Geolocation

    Get PDF
    Recently, a number of empirical models have been introduced in the literature for the behavior of direct path used in the design of algorithms for RF based indoor geolocation. Frequent absence of direct path has been a major burden on the performance of these algorithms directing researchers to discover algorithms using multipath diversity. However, there is no reliable model for the behavior of multipath components pertinent to precise indoor geolocation. In this dissertation, we first examine the absence of direct path by statistical analysis of empirical data. Then we show how the concept of path persistency can be exploited to obtain accurate ranging using multipath diversity. We analyze the effects of building architecture on the multipath structure by demonstrating the effects of wall length and wall density on the path persistency. Finally, we introduce a comprehensive model for the spatial behavior of multipath components. We use statistical analysis of empirical data obtained by a measurement calibrated ray-tracing tool to model the time-of- arrival, angle-of-arrival and path gains. The relationship between the transmitter-receiver separation and the number of paths are also incorporated in our model. In addition, principles of ray optics are applied to explain the spatial evolution of path gains, time-of-arrival and angle-of-arrival of individual multipath components as a mobile terminal moves inside a typical indoor environment. We also use statistical modeling for the persistency and birth/death rate of the paths

    Doctor of Philosophy

    Get PDF
    dissertationDevice-free localization (DFL) and tracking services are important components in security, emergency response, home and building automation, and assisted living applications where an action is taken based on a person's location. In this dissertation, we develop new methods and models to enable and improve DFL in a variety of radio frequency sensor network configurations. In the first contribution of this work, we develop a linear regression and line stabbing method which use a history of line crossing measurements to estimate the track of a person walking through a wireless network. Our methods provide an alternative approach to DFL in wireless networks where the number of nodes that can communicate with each other in a wireless network is limited and traditional DFL methods are ill-suited. We then present new methods that enable through-wall DFL when nodes in the network are in motion. We demonstrate that we can detect when a person crosses between ultra-wideband radios in motion based on changes in the energy contained in the first few nanoseconds of a measured channel impulse response. Through experimental testing, we show how our methods can localize a person through walls with transceivers in motion. Next, we develop new algorithms to localize boundary crossings when a person crosses between multiple nodes simultaneously. We experimentally evaluate our algorithms with received signal strength (RSS) measurements collected from a row of radio frequency (RF) nodes placed along a boundary and show that our algorithms achieve orders of magnitude better localization classification than baseline DFL methods. We then present a way to improve the models used in through-wall radio tomographic imaging with E-shaped patch antennas we develop and fabricate which remain tuned even when placed against a dielectric. Through experimentation, we demonstrate the E-shaped patch antennas lower localization error by 44% compared with omnidirectional and microstrip patch antennas. In our final contribution, we develop a new mixture model that relates a link's RSS as a function of a person's location in a wireless network. We develop new localization methods that compute the probabilities of a person occupying a location based on our mixture model. Our methods continuously recalibrate the model to achieve a low localization error even in changing environments

    Techniques for Communication and Geolocation using Wireless Ad hoc Networks

    Get PDF
    Networks with hundreds of ad hoc nodes equipped with communication and position finding abilities are conceivable with recent advancements in technology. Methods are presented in this thesis to assess the communicative capabilities and node position estimation of mobile ad hoc networks. Specifically, we investigate techniques for providing communication and geolocation with specific characteristics in wireless ad hoc networks. The material presented in this thesis, communication and geolocation, may initially seem a collection of disconnected topics related only distantly under the banner of ad hoc networks. However, systems currently in development combining these techniques into single integrated systems. In this thesis first, we investigate the effect of multilayer interaction, including fading and path loss, on ad hoc routing protocol performance, and present a procedure for deploying an ad hoc network based on extensive simulations. Our first goal is to test the routing protocols with parameters that can be used to characterize the environment in which they might be deployed. Second, we analyze the location discovery problem in ad hoc networks and propose a fully distributed, infrastructure-free positioning algorithm that does not rely on the Global Positioning System (GPS). The algorithm uses the approximate distances between the nodes to build a relative coordinate system in which the node positions are computed in three-dimensions. However, in reconstructing three-dimensional positions from approximate distances, we need to consider error threshold, graph connectivity, and graph rigidity. We also statistically evaluate the location discovery procedure with respect to a number of parameters, such as error propagation and the relative positions of the nodes

    Geographic Routing and Location Veri cation for Wireless Networks

    Full text link
    This thesis presents the development of a new hybrid location verification-based geographic routing protocol for wireless networks. A characteristic that permeates the thesis is the utilization of a Location Verification System (LVS) within the geographic routing protocol to increase security via enhanced protection against location-spoofing attacks. More specifically, the bandwidth cost of an LVS on the control overhead of a geographical routing protocol is determined. A systematic performance study of this hybrid LVS-based geographic routing protocol is then carried out where the impact of three important mobility models on the scalability performance of the routing protocol is investigated. A focus application network studied is vehicular networks. It is demonstrated that under known channel conditions, the additional control overhead needed for the routing protocol remains scalable. Beyond this, a new solution is provided to the problem of location verification using Cramer-Rao bounds on location accuracy. Compared to known-optimal solutions, this new verification solution has the advantage that it does not depend on a priori information on the probability of any device being malicious. It is further shown that the verification solution proposed provides close to optimal performance over a wide range of anticipated channel conditions, is simple to deploy, and can easily be integrated into any application network. Finally, it is shown that the impact of unknown path loss exponents can be accommodated within the routing protocol without any significant impact on the scalability. The work in this thesis provides a foundational pathway to the real-world utilization of a geographic routing protocol that is secured against the most detrimental effects of location-spoofing attacks

    BLE-based Indoor Localization and Contact Tracing Approaches

    Get PDF
    Internet of Things (IoT) has penetrated different aspects of modern life with smart sensors being prevalent within our surrounding indoor environments. Furthermore, dependence on IoT-based Contact Tracing (CT) models has significantly increased mainly due to the COVID-19 pandemic. There is, therefore, an urgent quest to develop/design efficient, autonomous, trustworthy, and secure indoor CT solutions leveraging accurate indoor localization/tracking approaches. In this context, the first objective of this Ph.D. thesis is to enhance accuracy of Bluetooth Low Energy (BLE)-based indoor localization. BLE-based localization is typically performed based on the Received Signal Strength Indicator (RSSI). Extreme fluctuations of the RSSI occurring due to different factors such as multi-path effects and noise, however, prevent the BLE technology to be a reliable solution with acceptable accuracy for dynamic tracking/localization in indoor environments. In this regard, first, an IoT dataset is constructed based on multiple thoroughly separated indoor environments to incorporate the effects of various interferences faced in different spaces. The constructed dataset is then used to develop a Reinforcement Learning (RL)-based information fusion strategy to form a multiple-model implementation consisting of RSSI, Pedestrian dead reckoning (PDR), and Angle-of-Arrival (AoA)-based models. In the second part of the thesis, the focus is devoted to application of multi-agent Deep Neural Networks (DNN) models for indoor tracking. DNN-based approaches are, however, prone to overfitting and high sensitivity to parameter selection, which results in sample inefficiency. Moreover, data labelling is a time-consuming and costly procedure. To address these issues, we leverage Successor Representations (SR)-based techniques, which can learn the expected discounted future state occupancy, and the immediate reward of each state. A Deep Multi-Agent Successor Representation framework is proposed that can adapt quickly to the changes in a multi-agent environment faster than the Model-Free (MF) RL methods and with a lower computational cost compared to Model-Based (MB) RL algorithms. In the third part of the thesis, the developed indoor localization techniques are utilized to design a novel indoor CT solution, referred to as the Trustworthy Blockchain-enabled system for Indoor Contact Tracing (TB-ICT) framework. The TB-ICT is a fully distributed and innovative blockchain platform exploiting the proposed dynamic Proof of Work (dPoW) approach coupled with a Randomized Hash Window (W-Hash) and dynamic Proof of Credit (dPoC) mechanisms

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Resource Allocation and Mode Selection in 5G Networks Based on Energy Efficient Game Theory Approach

    Get PDF
    With the advent of next-generation cellular networks, energy efficiency is becoming increasingly important. To tackle this issue, this paper investigates energy efficiency in D2D-enabled heterogeneous cellular networks. Boosting the longterm energy efficiency of wireless 5G communication networks is being explored through mode selection and resource allocation. The study proposed a three-stage process for energy-efficient mode selection and resource allocation. The process starts with cellular users who switch to D2D emitting a beacon and cellular users within close proximity reacting to it. A proposed auction mechanism will be enacted inside the group in the second state ( in this paper, the group size will be four). Next, each cellular user was classified according to SINR values, distance, and battery life, so that they could dynamically transition between standard cellular mode and D2D mode. For stage three, direct-hop hybrid D2D communication, we developed a TAMM double auction game model that efficiently splits resources. To identify the true bidders in our game model, we compute the median and mode values of the ASK and BID values received by both seller and buyer cellular users. A simulation study shows that the proposed method is energy-efficient in a heterogeneous network enabled by D2D

    Resource Allocation for Coordinated Multipoint Joint Transmission System and Received Signal Strength Based Positioning in Long Term Evolution Network

    Get PDF
    The Long-Term Evolution Advanced (LTE-A) system are expected to provide high speed and high quality services, which are supported by emerging technologies such as Coordinated Multipoint (CoMP) transmission and reception. Dynamic resource allocation plays a vital role in LTE-A design and planning, which is investigated in this thesis. In addition, Received Signal Strength (RSS) based positioning is also investigated in orthogonal frequency division multiplexing (OFDM) based wireless networks, which is based on an industry project. In the first contribution, a physical resource blocks (PRB) allocation scheme with fuzzy logic based user selection is proposed. This work considers three parameters and exploit a fuzzy logic (FL) based criterion to categorize users. As a result, it enhances accuracy of user classification. This work improves system capacity by a ranking based PRBs allocation schemes. Simulation results show that proposed fuzzy logic based user selection scheme improves performance for CoMP users. Proposed ranking based greedy allocation algorithm cut complexity in half but maintain same performance. In the second contribution, a two-layer proportional-fair (PF) user scheduling scheme is proposed. This work focused on fairness between CoMP and Non-CoMP users instead of balancing fairness in each user categories. Proposed scheme jointly optimizes fairness and system capacity over both CoMP and Non-CoMP users. Simulation results show that proposed algorithm significantly improves fairness between CoMP and Non-CoMP users. In the last contribution, RSS measurement method in LTE system is analyzed and a realizable RSS measurement method is proposed to fight against multipath effect. Simulation results shows that proposed method significantly reduced measurement error caused by multipath. In RSS based positioning area, this is the first work that consider exploiting LTE’s own signal strength measurement mechanism to enhance accuracy of positioning. Furthermore, the proposed method can be deployed in modern LTE system with limited cost
    • …
    corecore