8,860 research outputs found

    Localization errors in solving stochastic partial differential equations in the whole space

    Get PDF
    Cauchy problems with SPDEs on the whole space are localized to Cauchy problems on a ball of radius RR. This localization reduces various kinds of spatial approximation schemes to finite dimensional problems. The error is shown to be exponentially small. As an application, a numerical scheme is presented which combines the localization and the space and time discretisation, and thus is fully implementable.Comment: Some details added; published versio

    Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast

    Get PDF
    We construct finite-dimensional approximations of solution spaces of divergence form operators with LL^\infty-coefficients. Our method does not rely on concepts of ergodicity or scale-separation, but on the property that the solution space of these operators is compactly embedded in H1H^1 if source terms are in the unit ball of L2L^2 instead of the unit ball of H1H^{-1}. Approximation spaces are generated by solving elliptic PDEs on localized sub-domains with source terms corresponding to approximation bases for H2H^2. The H1H^1-error estimates show that O(hd)\mathcal{O}(h^{-d})-dimensional spaces with basis elements localized to sub-domains of diameter O(hαln1h)\mathcal{O}(h^\alpha \ln \frac{1}{h}) (with α[1/2,1)\alpha \in [1/2,1)) result in an O(h22α)\mathcal{O}(h^{2-2\alpha}) accuracy for elliptic, parabolic and hyperbolic problems. For high-contrast media, the accuracy of the method is preserved provided that localized sub-domains contain buffer zones of width O(hαln1h)\mathcal{O}(h^\alpha \ln \frac{1}{h}) where the contrast of the medium remains bounded. The proposed method can naturally be generalized to vectorial equations (such as elasto-dynamics).Comment: Accepted for publication in SIAM MM

    Level Set Methods for Stochastic Discontinuity Detection in Nonlinear Problems

    Full text link
    Stochastic physical problems governed by nonlinear conservation laws are challenging due to solution discontinuities in stochastic and physical space. In this paper, we present a level set method to track discontinuities in stochastic space by solving a Hamilton-Jacobi equation. By introducing a speed function that vanishes at discontinuities, the iso-zero of the level set problem coincide with the discontinuities of the conservation law. The level set problem is solved on a sequence of successively finer grids in stochastic space. The method is adaptive in the sense that costly evaluations of the conservation law of interest are only performed in the vicinity of the discontinuities during the refinement stage. In regions of stochastic space where the solution is smooth, a surrogate method replaces expensive evaluations of the conservation law. The proposed method is tested in conjunction with different sets of localized orthogonal basis functions on simplex elements, as well as frames based on piecewise polynomials conforming to the level set function. The performance of the proposed method is compared to existing adaptive multi-element generalized polynomial chaos methods

    Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    Get PDF
    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation
    corecore