398 research outputs found

    Joint received signal strength, angle-of-arrival, and time-of-flight positioning

    Get PDF
    This paper presents a software positioning framework that is able to jointly use measured values of three parameters: the received signal strength, the angle-of-arrival, and the time-of-flight of the wireless signals. Based on experimentally determined measurement accuracies of these three parameters, results of a realistic simulation scenario are presented. It is shown that for the given configuration, angle-of-arrival and received signal strength measurements benefit from a hybrid system that combines both. Thanks to their higher accuracy, time-of-flight systems perform significantly better, and obtain less added value from a combination with the other two parameters

    EXPERIMENTAL EVALUATION OF MACHINE LEARNING ALGORITHMS FOR FINGERPRINTING INDOOR LOCALIZATION

    Get PDF
    One of the most preferred range-free indoor localization methods is the location fingerprinting. In the fingerprinting localization phase machine learning algorithms have widespread usage in estimating positions of the target node. The real challenge in indoor localization systems is to find out the proper machine learning algorithm. In this paper, three different machine learning algorithms for training the fingerprint database were used. We analysed the localization accuracy depending on a fingerprint density and number of line-of-sight (LOS) anchors. Experiments confirmed that Gaussian processes algorithm is superior to all other machine learning algorithms. The results prove that the localization accuracy can be achieved with a sub-decimetre resolution under typical real-world conditions

    A Non-Line-of-Sight Mitigation Method For Indoor Ultra-Wideband Localization With Multiple Walls

    Get PDF
    Ultra-wideband (UWB) ranging techniques can provide accurate distance measurement under line-of-sight (LOS) conditions. However, various walls and obstacles in indoor non-LOS (NLOS) environments, which obstruct the direct propagation of UWB signals, can generate significant ranging errors. Due to the complex through-wall UWB signal propagation, most conventional studies simplify the ranging error model by assuming that the incidence angle is zero or the relative permittivity\u27s for different walls are the same to improve the through-wall UWB localization performance. Considering walls are different in realistic settings, this article presents a through-multiple-wall NLOS mitigation method for UWB indoor positioning. First, spatial geometric equilibrium equations of UWB through-wall propagation and a numerical method are developed for the precise modeling of UWB through-wall ranging errors. Then, calculated error maps are determined numerically without field measurements. Finally, the determined error maps are combined with a gray wolf optimization algorithm for localization. The proposed method is evaluated via field experiments with four rooms, three walls, and six penetration cases. The results demonstrate that the method can strongly mitigate the multi-wall. NLOS effects on the performance of UWB positioning systems. This solution can reduce project costs and number of power supplies for UWB indoor positioning applications

    Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications

    Get PDF
    Nowadays, the availability of the location information becomes a key factor in today’s communications systems for allowing location based services. In outdoor scenarios, the Mobile Terminal (MT) position is obtained with high accuracy thanks to the Global Positioning System (GPS) or to the standalone cellular systems. However, the main problem of GPS or cellular systems resides in the indoor environment and in scenarios with deep shadowing effect where the satellite or cellular signals are broken. In this paper, we will present a review over different technologies and concepts used to improve indoor localization. Additionally, we will discuss different applications based on different localization approaches. Finally, comprehensive challenges in terms of accuracy, cost, complexity, security, scalability, etc. are presente

    Hybrid 3D Localization for Visible Light Communication Systems

    Full text link
    In this study, we investigate hybrid utilization of angle-of-arrival (AOA) and received signal strength (RSS) information in visible light communication (VLC) systems for 3D localization. We show that AOA-based localization method allows the receiver to locate itself via a least squares estimator by exploiting the directionality of light-emitting diodes (LEDs). We then prove that when the RSS information is taken into account, the positioning accuracy of AOA-based localization can be improved further using a weighted least squares solution. On the other hand, when the radiation patterns of LEDs are explicitly considered in the estimation, RSS-based localization yields highly accurate results. In order to deal with the system of nonlinear equations for RSS-based localization, we develop an analytical learning rule based on the Newton-Raphson method. The non-convex structure is addressed by initializing the learning rule based on 1) location estimates, and 2) a newly developed method, which we refer as random report and cluster algorithm. As a benchmark, we also derive analytical expression of the Cramer-Rao lower bound (CRLB) for RSS-based localization, which captures any deployment scenario positioning in 3D geometry. Finally, we demonstrate the effectiveness of the proposed solutions for a wide range of LED characteristics and orientations through extensive computer simulations.Comment: Submitted to IEEE/OSA Journal of Lightwave Technology (10 pages, 14 figures

    A Review of Hybrid Indoor Positioning Systems Employing WLAN Fingerprinting and Image Processing

    Get PDF
    Location-based services (LBS) are a significant permissive technology. One of the main components in indoor LBS is the indoor positioning system (IPS). IPS utilizes many existing technologies such as radio frequency, images, acoustic signals, as well as magnetic sensors, thermal sensors, optical sensors, and other sensors that are usually installed in a mobile device. The radio frequency technologies used in IPS are WLAN, Bluetooth, Zig Bee, RFID, frequency modulation, and ultra-wideband. This paper explores studies that have combined WLAN fingerprinting and image processing to build an IPS. The studies on combined WLAN fingerprinting and image processing techniques are divided based on the methods used. The first part explains the studies that have used WLAN fingerprinting to support image positioning. The second part examines works that have used image processing to support WLAN fingerprinting positioning. Then, image processing and WLAN fingerprinting are used in combination to build IPS in the third part. A new concept is proposed at the end for the future development of indoor positioning models based on WLAN fingerprinting and supported by image processing to solve the effect of people presence around users and the user orientation problem

    Machine Learning Based Approach for Indoor Localization Using Ultra-Wide Bandwidth (UWB) System for Industrial Internet of Things (IIoT)

    Get PDF
    With the rapid development of wireless communication technology and the emergence of the Industrial Internet of Things (IIoT)s applications, high-precision Indoor Positioning Services (IPS) are urgently required. While the Global Positioning System (GPS) has been a key technology for outdoor localization, its limitation for indoor environments is well known. UltraWideBand (UWB) can help provide a very accurate position or localization for indoor harsh propagation environments. This paper focuses on improving the accuracy of the UWB indoor localization system including the Line-of-Sight (LoS) and NonLine-of-Sight (NLoS) conditions by developing a Machine Learning (ML) algorithm. In this paper, a Naive Bayes (NB) ML algorithm is developed for UWB IPS. The performance of the developed algorithm is evaluated by Receiving Operating Curves (ROC)s. The results indicate that by employing the NB based ML algorithm significantly improves the localization accuracy of the UWB system for both the LoS and NLoS environmen
    corecore