1,019 research outputs found

    Self-Supervised Gait Encoding with Locality-Aware Attention for Person Re-Identification

    Full text link
    Gait-based person re-identification (Re-ID) is valuable for safety-critical applications, and using only 3D skeleton data to extract discriminative gait features for person Re-ID is an emerging open topic. Existing methods either adopt hand-crafted features or learn gait features by traditional supervised learning paradigms. Unlike previous methods, we for the first time propose a generic gait encoding approach that can utilize unlabeled skeleton data to learn gait representations in a self-supervised manner. Specifically, we first propose to introduce self-supervision by learning to reconstruct input skeleton sequences in reverse order, which facilitates learning richer high-level semantics and better gait representations. Second, inspired by the fact that motion's continuity endows temporally adjacent skeletons with higher correlations ("locality"), we propose a locality-aware attention mechanism that encourages learning larger attention weights for temporally adjacent skeletons when reconstructing current skeleton, so as to learn locality when encoding gait. Finally, we propose Attention-based Gait Encodings (AGEs), which are built using context vectors learned by locality-aware attention, as final gait representations. AGEs are directly utilized to realize effective person Re-ID. Our approach typically improves existing skeleton-based methods by 10-20% Rank-1 accuracy, and it achieves comparable or even superior performance to multi-modal methods with extra RGB or depth information. Our codes are available at https://github.com/Kali-Hac/SGE-LA.Comment: Accepted at IJCAI 2020 Main Track. Sole copyright holder is IJCAI. Codes are available at https://github.com/Kali-Hac/SGE-L

    Attribute Prototype Network for Zero-Shot Learning

    Full text link
    From the beginning of zero-shot learning research, visual attributes have been shown to play an important role. In order to better transfer attribute-based knowledge from known to unknown classes, we argue that an image representation with integrated attribute localization ability would be beneficial for zero-shot learning. To this end, we propose a novel zero-shot representation learning framework that jointly learns discriminative global and local features using only class-level attributes. While a visual-semantic embedding layer learns global features, local features are learned through an attribute prototype network that simultaneously regresses and decorrelates attributes from intermediate features. We show that our locality augmented image representations achieve a new state-of-the-art on three zero-shot learning benchmarks. As an additional benefit, our model points to the visual evidence of the attributes in an image, e.g. for the CUB dataset, confirming the improved attribute localization ability of our image representation.Comment: NeurIPS 2020. The code is publicly available at https://wenjiaxu.github.io/APN-ZSL
    • …
    corecore