30 research outputs found

    Electrical and Computer Engineering Research Report 2008

    Get PDF
    Department Research New Chair Publications Enterprisehttps://digitalcommons.mtu.edu/ece-annualreports/1005/thumbnail.jp

    Control of sectioned on-chip communication

    Get PDF

    Smart hardware designs for probabilistically-analyzable processor architectures

    Get PDF
    Future Critical Real-Time Embedded Systems (CRTES), like those is planes, cars or trains, require more and more guaranteed performance in order to satisfy the increasing performance demands of advanced complex software features. While increased performance can be achieved by deploying processor techniques currently used in High-Performance Computing (HPC) and mainstream domains, their use challenges the software timing analysis, a necessary step in CRTES' verification and validation. Cache memories are known to have high impact in performance, and in fact, current CRTES include multicores usually with several levels of cache. In this line, this Thesis aims at increasing the guaranteed performance of CRTES by using techniques for caches building upon time randomization and providing probabilistic guarantees of tasks' execution time. In this Thesis, we first focus on on improving cache placement and replacement to improve guaranteed performance. For placement, different existing policies are explored in a multi-level cache setup, and a solution is reached in which different of those policies are combined. For cache replacement, we analyze a pathological scenario that no cache policy so far accounts and propose several policies that fix this pathological scenario. For shared caches in multicore we observe that contention is mainly caused by private writes that go through to the shared cache, yet using a pure write-back policy also has its drawbacks. We propose a hybrid approach to mitigate this contention. Building on this solution, the next contribution tackles a problem caused by the need of some reliability mechanisms in CRTES. Implementing reliability close to the processor's core has a significant impact in performance. A look-ahead error detection solution is proposed to greatly mitigate the performance impact. The next contribution proposes the first hardware prefetcher for CRTES with arbitrary cache hierarchies. Given its speculative nature, prefetchers that have a guaranteed positive impact on performance are difficult to design. We present a framework that provides execution time guarantees and obtains a performance benefit. Finally, we focus on the impact of timing anomalies in CRTES with caches. For the first time, a definition and taxonomy of timing anomalies is given for Measurement-Based Timing Analysis. Then, we focus on a specific timing anomaly that can happen with caches and provide a solution to account for it in the execution time estimates.Los Sistemas Empotrados de Tiempo-Real Crítico (SETRC), como los de los aviones, coches o trenes, requieren más y más rendimiento garantizado para satisfacer la demanda al alza de rendimiento para funciones complejas y avanzadas de software. Aunque el incremento en rendimiento puede ser adquirido utilizando técnicas de arquitectura de procesadores actualmente utilizadas en la Computación de Altas Prestaciones (CAP) i en los dominios convencionales, este uso presenta retos para el análisis del tiempo de software, un paso necesario en la verificación y validación de SETRC. Las memorias caches son conocidas por su gran impacto en rendimiento y, de hecho, los actuales SETRC incluyen multicores normalmente con diversos niveles de cache. En esta línea, esta Tesis tiene como objetivo mejorar el rendimiento garantizado de los SETRC utilizando técnicas para caches y utilizando métodos como la randomización del tiempo y proveyendo garantías probabilísticas de tiempo de ejecución de las tareas. En esta Tesis, primero nos centramos en mejorar la colocación y el reemplazo de caches para mejorar el rendimiento garantizado. Para la colocación, diferentes políticas son exploradas en un sistema cache multi-nivel, y se llega a una solución donde diversas de estas políticas son combinadas. Para el reemplazo, analizamos un escenario patológico que ninguna política actual tiene en cuenta, y proponemos varias políticas que solucionan este escenario patológico. Para caches compartidas en multicores, observamos que la contención es causada principalmente por escrituras privadas que van a través de la cache compartida, pero usar una política de escritura retardada pura también tiene sus consecuencias. Proponemos un enfoque híbrido para mitigar la contención. Sobre esta solución, la siguiente contribución ataca un problema causado por la necesidad de mecanismos de fiabilidad en SETRC. Implementar fiabilidad cerca del núcleo del procesador tiene un impacto significativo en rendimiento. Una solución basada en anticipación se propone para mitigar el impacto en rendimiento. La siguiente contribución propone el primer prefetcher hardware para SETRC con una jerarquía de caches arbitraria. Por primera vez, se da una definición y taxonomía de anomalías temporales para Análisis Temporal Basado en Medidas. Después, nos centramos en una anomalía temporal concreta que puede pasar con caches y ofrecemos una solución que la tiene en cuenta en las estimaciones del tiempo de ejecución.Postprint (published version

    High-level services for networks-on-chip

    Get PDF
    Future technology trends envision that next-generation Multiprocessors Systems-on- Chip (MPSoCs) will be composed of a combination of a large number of processing and storage elements interconnected by complex communication architectures. Communication and interconnection between these basic blocks play a role of crucial importance when the number of these elements increases. Enabling reliable communication channels between cores becomes therefore a challenge for system designers. Networks-on-Chip (NoCs) appeared as a strategy for connecting and managing the communication between several design elements and IP blocks, as required in complex Systems-on-Chip (SoCs). The topic can be considered as a multidisciplinary synthesis of multiprocessing, parallel computing, networking, and on- chip communication domains. Networks-on-Chip, in addition to standard communication services, can be employed for providing support for the implementation of system-level services. This dissertation will demonstrate how high-level services can be added to an MPSoC platform by embedding appropriate hardware/software support in the network interfaces (NIs) of the NoC. In this dissertation, the implementation of innovative modules acting in parallel with protocol translation and data transmission in NIs is proposed and evaluated. The modules can support the execution of the high-level services in the NoC at a relatively low cost in terms of area and energy consumption. Three types of services will be addressed and discussed: security, monitoring, and fault tolerance. With respect to the security aspect, this dissertation will discuss the implementation of an innovative data protection mechanism for detecting and preventing illegal accesses to protected memory blocks and/or memory mapped peripherals. The second aspect will be addressed by proposing the implementation of a monitoring system based on programmable multipurpose monitoring probes aimed at detecting NoC internal events and run-time characteristics. As last topic, new architectural solutions for the design of fault tolerant network interfaces will be presented and discussed

    Fault Tolerant Real Time Dynamic Scheduling Algorithm For Heterogeneous Distributed System

    Get PDF
    Fault-tolerance becomes an important key to establish dependability in Real Time Distributed Systems (RTDS). In fault-tolerant Real Time Distributed systems, detection of fault and its recovery should be executed in timely manner so that in spite of fault occurrences the intended output of real-time computations always take place on time. Hardware and software redundancy are well-known e ective methods for faulttolerance, where extra hard ware (e.g., processors, communication links) and software (e.g., tasks, messages) are added into the system to deal with faults. Performances of RTDS are mostly guided by eciency of scheduling algorithm and schedulability analysis are performed on the system to ensure the timing constrains. This thesis examines the scenarios where a real time system requires very little redundant hardware resources to tolerate failures in heterogeneous real time distributed systems with point-to-point communication links. Fault tolerance can be achieved by..

    상변화 메모리 시스템의 간섭 오류 완화 및 RMW 성능 향상 기법

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2021.8. 이혁재.Phase-change memory (PCM) announces the beginning of the new era of memory systems, owing to attractive characteristics. Many memory product manufacturers (e.g., Intel, SK Hynix, and Samsung) are developing related products. PCM can be applied to various circumstances; it is not simply limited to an extra-scale database. For example, PCM has a low standby power due to its non-volatility; hence, computation-intensive applications or mobile applications (i.e., long memory idle time) are suitable to run on PCM-based computing systems. Despite these fascinating features of PCM, PCM is still far from the general commercial market due to low reliability and long latency problems. In particular, low reliability is a painful problem for PCM in past decades. As the semiconductor process technology rapidly scales down over the years, DRAM reaches 10 nm class process technology. In addition, it is reported that the write disturbance error (WDE) would be a serious issue for PCM if it scales down below 54 nm class process technology. Therefore, addressing the problem of WDEs becomes essential to make PCM competitive to DRAM. To overcome this problem, this dissertation proposes a novel approach that can restore meta-stable cells on demand by levering two-level SRAM-based tables, thereby significantly reducing the number WDEs. Furthermore, a novel randomized approach is proposed to implement a replacement policy that originally requires hundreds of read ports on SRAM. The second problem of PCM is a long-latency compared to that of DRAM. In particular, PCM tries to enhance its throughput by adopting a larger transaction unit; however, the different unit size from the general-purpose processor cache line further degrades the system performance due to the introduction of a read-modify-write (RMW) module. Since there has never been any research related to RMW in a PCM-based memory system, this dissertation proposes a novel architecture to enhance the overall system performance and reliability of a PCM-based memory system having an RMW module. The proposed architecture enhances data re-usability without introducing extra storage resources. Furthermore, a novel operation that merges commands regardless of command types is proposed to enhance performance notably. Another problem is the absence of a full simulation platform for PCM. While the announced features of the PCM-related product (i.e., Intel Optane) are scarce due to confidential issues, all priceless information can be integrated to develop an architecture simulator that resembles the available product. To this end, this dissertation tries to scrape up all available features of modules in a PCM controller and implement a dedicated simulator for future research purposes.상변화 메모리는(PCM) 매력적인 특성을 통해 메모리 시스템의 새로운 시대의 시작을 알렸다. 많은 메모리 관련 제품 제조업체(예 : 인텔, SK 하이닉스, 삼성)가 관련 제품 개발에 박차를 가하고 있다. PCM은 단순히 대규모 데이터베이스에만 국한되지 않고 다양한 상황에 적용될 수 있다. 예를 들어, PCM은 비휘발성으로 인해 대기 전력이 낮다. 따라서 계산 집약적인 애플리케이션 또는 모바일 애플리케이션은(즉, 긴 메모리 유휴 시간) PCM 기반 컴퓨팅 시스템에서 실행하기에 적합하다. PCM의 이러한 매력적인 특성에도 불구하고 PCM은 낮은 신뢰성과 긴 대기 시간으로 인해 여전히 일반 산업 시장에서는 DRAM과 다소 격차가 있다. 특히 낮은 신뢰성은 지난 수십 년 동안 PCM 기술의 발전을 저해하는 문제다. 반도체 공정 기술이 수년에 걸쳐 빠르게 축소됨에 따라 DRAM은 10nm 급 공정 기술에 도달하였다. 이어서, 쓰기 방해 오류 (WDE)가 54nm 등급 프로세스 기술 아래로 축소되면 PCM에 심각한 문제가 될 것으로 보고되었다. 따라서, WDE 문제를 해결하는 것은 PCM이 DRAM과 동등한 경쟁력을 갖추도록 하는 데 있어 필수적이다. 이 문제를 극복하기 위해 이 논문에서는 2-레벨 SRAM 기반 테이블을 활용하여 WDE 수를 크게 줄여 필요에 따라 준 안정 셀을 복원할 수 있는 새로운 접근 방식을 제안한다. 또한, 원래 SRAM에서 수백 개의 읽기 포트가 필요한 대체 정책을 구현하기 위해 새로운 랜덤 기반의 기법을 제안한다. PCM의 두 번째 문제는 DRAM에 비해 지연 시간이 길다는 것이다. 특히 PCM은 더 큰 트랜잭션 단위를 채택하여 단위시간 당 데이터 처리량 향상을 도모한다. 그러나 범용 프로세서 캐시 라인과 다른 유닛 크기는 읽기-수정-쓰기 (RMW) 모듈의 도입으로 인해 시스템 성능을 저하하게 된다. PCM 기반 메모리 시스템에서 RMW 관련 연구가 없었기 때문에 본 논문은 RMW 모듈을 탑재 한 PCM 기반 메모리 시스템의 전반적인 시스템 성능과 신뢰성을 향상하게 시킬 수 있는 새로운 아키텍처를 제안한다. 제안된 아키텍처는 추가 스토리지 리소스를 도입하지 않고도 데이터 재사용성을 향상시킨다. 또한, 성능 향상을 위해 명령 유형과 관계없이 명령을 병합하는 새로운 작업을 제안한다. 또 다른 문제는 PCM을 위한 완전한 시뮬레이션 플랫폼이 부재하다는 것이다. PCM 관련 제품(예 : Intel Optane)에 대해 발표된 정보는 대외비 문제로 인해 부족하다. 하지만 알려져 있는 정보를 적절히 취합하면 시중 제품과 유사한 아키텍처 시뮬레이터를 개발할 수 있다. 이를 위해 본 논문은 PCM 메모리 컨트롤러에 필요한 모든 모듈 정보를 활용하여 향후 이와 관련된 연구에서 충분히 사용 가능한 전용 시뮬레이터를 구현하였다.1 INTRODUCTION 1 1.1 Limitation of Traditional Main Memory Systems 1 1.2 Phase-Change Memory as Main Memory 3 1.2.1 Opportunities of PCM-based System 3 1.2.2 Challenges of PCM-based System 4 1.3 Dissertation Overview 7 2 BACKGROUND AND PREVIOUS WORK 8 2.1 Phase-Change Memory 8 2.2 Mitigation Schemes for Write Disturbance Errors 10 2.2.1 Write Disturbance Errors 10 2.2.2 Verification and Correction 12 2.2.3 Lazy Correction 13 2.2.4 Data Encoding-based Schemes 14 2.2.5 Sparse-Insertion Write Cache 16 2.3 Performance Enhancement for Read-Modify-Write 17 2.3.1 Traditional Read-Modify-Write 17 2.3.2 Write Coalescing for RMW 19 2.4 Architecture Simulators for PCM 21 2.4.1 NVMain 21 2.4.2 Ramulator 22 2.4.3 DRAMsim3 22 3 IN-MODULE DISTURBANCE BARRIER 24 3.1 Motivation 25 3.2 IMDB: In Module-Disturbance Barrier 29 3.2.1 Architectural Overview 29 3.2.2 Implementation of Data Structures 30 3.2.3 Modification of Media Controller 36 3.3 Replacement Policy 38 3.3.1 Replacement Policy for IMDB 38 3.3.2 Approximate Lowest Number Estimator 40 3.4 Putting All Together: Case Studies 43 3.5 Evaluation 45 3.5.1 Configuration 45 3.5.2 Architectural Exploration 47 3.5.3 Effectiveness of the Replacement Policy 48 3.5.4 Sensitivity to Main Table Configuration 49 3.5.5 Sensitivity to Barrier Buffer Size 51 3.5.6 Sensitivity to AppLE Group Size 52 3.5.7 Comparison with Other Studies 54 3.6 Discussion 59 3.7 Summary 63 4 INTEGRATION OF AN RMW MODULE IN A PCM-BASED SYSTEM 64 4.1 Motivation 65 4.2 Utilization of DRAM Cache for RMW 67 4.2.1 Architectural Design 67 4.2.2 Algorithm 70 4.3 Typeless Command Merging 73 4.3.1 Architectural Design 73 4.3.2 Algorithm 74 4.4 An Alternative Implementation: SRC-RMW 78 4.4.1 Implementation of SRC-RMW 78 4.4.2 Design Constraint 80 4.5 Case Study 82 4.6 Evaluation 85 4.6.1 Configuration 85 4.6.2 Speedup 88 4.6.3 Read Reliability 91 4.6.4 Energy Consumption: Selecting a Proper Page Size 93 4.6.5 Comparison with Other Studies 95 4.7 Discussion 97 4.8 Summary 99 5 AN ALL-INCLUSIVE SIMULATOR FOR A PCM CONTROLLER 100 5.1 Motivation 101 5.2 PCMCsim: PCM Controller Simulator 103 5.2.1 Architectural Overview 103 5.2.2 Underlying Classes of PCMCsim 104 5.2.3 Implementation of Contention Behavior 108 5.2.4 Modules of PCMCsim 109 5.3 Evaluation 116 5.3.1 Correctness of the Simulator 116 5.3.2 Comparison with Other Simulators 117 5.4 Summary 119 6 Conclusion 120 Abstract (In Korean) 141 Acknowledgment 143박

    Application Centric Networks-On-Chip Design Solutions for Future Multicore Systems

    Get PDF
    With advances in technology, future multicore systems scaled to 100s and 1000s of cores/accelerators are being touted as an effective solution for extracting huge performance gains using parallel programming paradigms. However with the failure of Dennard Scaling all the components on the chip cannot be run simultaneously without breaking the power and thermal constraints leading to strict chip power envelops. The scaling up of the number of on chip components has also brought upon Networks-On-Chip (NoC) based interconnect designs like 2D mesh. The contribution of NoC to the total on chip power and overall performance has been increasing steadily and hence high performance power-efficient NoC designs are becoming crucial. Future multicore paradigms can be broadly classified, based on the applications they are tailored to, into traditional Chip Multi processor(CMP) based application based systems, characterized by low core and NoC utilization, and emerging big data application based systems, characterized by large amounts of data movement necessitating high throughput requirements. To this order, we propose NoC design solutions for power-savings in future CMPs tailored to traditional applications and higher effective throughput gains in multicore systems tailored to bandwidth intensive applications. First, we propose Fly-over, a light-weight distributed mechanism for power-gating routers attached to switched off cores to reduce NoC power consumption in low load CMP environment. Secondly, we plan on utilizing a promising next generation memory technology, Spin-Transfer Torque Magnetic RAM(STT-MRAM), to achieve enhanced NoC performance to satisfy the high throughput demands in emerging bandwidth intensive applications, while reducing the power consumption simultaneously. Thirdly, we present a hardware data approximation framework for NoCs, APPROX-NoC, with an online data error control mechanism, which can leverage the approximate computing paradigm in the emerging data intensive big data applications to attain higher performance per watt
    corecore