127 research outputs found

    An improved pig reference genome sequence to enable pig genetics and genomics research.

    Get PDF
    BACKGROUND: The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model given its similarity in size, anatomy, physiology, metabolism, pathology, and pharmacology to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete, and unresolved redundancies, short-range order and orientation errors, and associated misassembled genes limited its utility. RESULTS: We present 2 annotated highly contiguous chromosome-level genome assemblies created with more recent long-read technologies and a whole-genome shotgun strategy, 1 for the same Duroc female (Sscrofa11.1) and 1 for an outbred, composite-breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. CONCLUSIONS: These highly contiguous assemblies plus annotation of a further 11 short-read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs

    LTMG: a novel statistical modeling of transcriptional expression states in single-cell RNA-Seq data

    Get PDF
    A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model, from the kinetic relationships of the transcriptional regulatory inputs, mRNA metabolism and abundance in single cells. LTMG infers the expression multi-modalities across single cells, meanwhile, the dropouts and low expressions are treated as left truncated. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of scRNA-seq data, comparing to three other state-of-the-art models. Our biological assumption of the low non-zero expressions, rationality of the multimodality setting, and the capability of LTMG in extracting expression states specific to cell types or functions, are validated on independent experimental data sets. A differential gene expression test and a co-regulation module identification method are further developed. We experimentally validated that our differential expression test has higher sensitivity and specificity, compared with other five popular methods. The co-regulation analysis is capable of retrieving gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA

    Deep Learning for Embedding and Integrating Multimodal Biomedical Data

    Get PDF
    Biomedical data is being generated in extremely high throughput and high dimension by technologies in areas ranging from single-cell genomics, proteomics, and transcriptomics (cytometry, single-cell RNA and ATAC sequencing) to neuroscience and cognition (fMRI and PET) to pharmaceuticals (drug perturbations and interactions). These new and emerging technologies and the datasets they create give an unprecedented view into the workings of their respective biological entities. However, there is a large gap between the information contained in these datasets and the insights that current machine learning methods can extract from them. This is especially the case when multiple technologies can measure the same underlying biological entity or system. By separately analyzing the same system but from different views gathered by different data modalities, patterns are left unobserved if they only emerge from the multi-dimensional joint representation of all of the modalities together. Through an interdisciplinary approach that emphasizes active collaboration with data domain experts, my research has developed models for data integration, extracting important insights through the joint analysis of varied data sources. In this thesis, I discuss models that address this task of multi-modal data integration, especially generative adversarial networks (GANs) and autoencoders (AEs). My research has been focused on using both of these models in a generative way for concrete problems in cutting-edge scientific applications rather than the exclusive focus on the generation of high-resolution natural images. The research in this thesis is united around ideas of building models that can extract new knowledge from scientific data inaccessible to currently existing methods

    Skaalautuvat laskentamenetelmät suuren kapasiteetin sekvensointidatan analytiikkaan populaatiogenomiikassa

    Get PDF
    High-throughput sequencing (HTS) technologies have enabled rapid DNA sequencing of whole-genomes collected from various organisms and environments, including human tissues, plants, soil, water, and air. As a result, sequencing data volumes have grown by several orders of magnitude, and the number of assembled whole-genomes is increasing rapidly as well. This whole-genome sequencing (WGS) data has revealed the genetic variation in humans and other species, and advanced various fields from human and microbial genomics to drug design and personalized medicine. The amount of sequencing data has almost doubled every six months, creating new possibilities but also big data challenges in genomics. Diverse methods used in modern computational biology require a vast amount of computational power, and advances in HTS technology are even widening the gap between the analysis input data and the analysis outcome. Currently, many of the existing genomic analysis tools, algorithms, and pipelines are not fully exploiting the power of distributed and high-performance computing, which in turn limits the analysis throughput and restrains the deployment of the applications to clinical practice in the long run. Thus, the relevance of harnessing distributed and cloud computing in bioinformatics is more significant than ever before. Besides, efficient data compression and storage methods for genomic data processing and retrieval integrated with conventional bioinformatics tools are essential. These vast datasets have to be stored and structured in formats that can be managed, processed, searched, and analyzed efficiently in distributed systems. Genomic data contain repetitive sequences, which is one key property in developing efficient compression algorithms to alleviate the data storage burden. Moreover, indexing compressed sequences appropriately for bioinformatics tools, such as read aligners, offers direct sequence search and alignment capabilities with compressed indexes. Relative Lempel-Ziv (RLZ) has been found to be an efficient compression method for repetitive genomes that complies with the data-parallel computing approach. RLZ has recently been used to build hybrid-indexes compatible with read aligners, and we focus on extending it with distributed computing. Data structures found in genomic data formats have properties suitable for parallelizing routine bioinformatics methods, e.g., sequence matching, read alignment, genome assembly, genotype imputation, and variant calling. Compressed indexing fused with the routine bioinformatics methods and data-parallel computing seems a promising approach to building population-scale genome analysis pipelines. Various data decomposition and transformation strategies are studied for optimizing data-parallel computing performance when such routine bioinformatics methods are executed in a complex pipeline. These novel distributed methods are studied in this dissertation and demonstrated in a generalized scalable bioinformatics analysis pipeline design. The dissertation starts from the main concepts of genomics and DNA sequencing technologies and builds routine bioinformatics methods on the principles of distributed and parallel computing. This dissertation advances towards designing fully distributed and scalable bioinformatics pipelines focusing on population genomic problems where the input data sets are vast and the analysis results are hard to achieve with conventional computing. Finally, the methods studied are applied in scalable population genomics applications using real WGS data and experimented with in a high performance computing cluster. The experiments include mining virus sequences from human metagenomes, imputing genotypes from large-scale human populations, sequence alignment with compressed pan-genomic indexes, and assembling reference genomes for pan-genomic variant calling.Suuren kapasiteetin sekvensointimenetelmät (High-Throughput Sequencing, HTS) ovat mahdollistaneet kokonaisten genomien nopean ja huokean sekvensoinnin eri organismeista ja ympäristöistä, mukaan lukien kudos-, maaperä-, vesistö- ja ilmastonäytteet. Tämän seurauksena sekvensointidatan ja koostettujen kokogenomien määrät ovat kasvaneet nopeasti. Kokogenomin sekvensointi on lisännyt ihmisen ja muiden lajien geneettisen perimän tietämystä ja edistänyt eri tieteenaloja ympäristötieteistä lääkesuunnitteluun ja yksilölliseen lääketieteeseen. Sekvensointidatan määrä on lähes kaksinkertaistunut puolivuosittain, mikä on luonut uusia mahdollisuuksia läpimurtoihin, mutta myös suuria datankäsittelyn haasteita. Nykyaikaisessa laskennallisessa biologiassa käytettävät monimutkaiset analyysimenetelmät vaativat yhä enemmän laskentatehoa HTS-datan kasvaessa, ja siksi HTS-menetelmien edistyminen kasvattaa kuilua raakadatasta lopullisiin analyysituloksiin. Useat tällä hetkellä käytetyistä genomianalyysityökaluista, algoritmeista ja ohjelmistoista eivät hyödynnä hajautetun laskennan tehoa kokonaisvaltaisesti, mikä puolestaan ​​hidastaa uusimpien analyysitulosten saamista ja rajoittaa tieteellisten ohjelmistojen käyttöönottoa kliinisessä lääketieteessä pitkällä aikavälillä. Näin ollen hajautetun ja pilvilaskennan hyödyntämisen merkitys bioinformatiikassa on tärkeämpää kuin koskaan ennen. Genomitiedon suoraa hakua ja käsittelyä tukevat pakkaus- ja tallennusmenetelmät mahdollistavat nopean ja tilatehokkaan genomianalytiikan. Uusia hajautettuihin järjestelmiin soveltuvia tietorakenteita tarvitaan, jotta näitä suuria datamääriä voidaan hallita, käsitellä, hakea ja analysoida tehokkaasti. Genomidata sisältää runsaasti toistuvia sekvenssejä, mikä on yksi keskeinen ominaisuus kehitettäessä tehokkaita pakkausalgoritmeja tiedontallennustaakkaa ja analysointia keventämään. Lisäksi pakattujen sekvenssien indeksointi yhdistettynä sekvenssilinjausmenetelmiin mahdollistaa sekvenssien satunnaishaun ja suoran linjauksen pakattuihin sekvensseihin. Relative Lempel-Ziv (RLZ) pakkausmenetelmä on todettu tehokkaaksi toistuville genomisekvensseille rinnakkaislaskentaa hyödyntäen. RLZ-menetelmää on viime aikoina sovellettu sekvenssilinjaukseen yhteensopiviin hybridi-indekseihin, joita tässä työssä on nopeutettu hajautetulla laskennalla. Genomiikan dataformaateista löytyvillä tietorakenteilla on ominaisuuksia, jotka soveltuvat hajautettuun sekvenssihakuun, sekvenssilinjaukseen, genomien koostamiseen, genotyyppien imputointiin ja varianttien havaitsemiseen. Pakattu indeksointi sovellettuna hajautetulla laskennalla tehostettuihin menetelmiin vaikuttaa lupaavalta lähestymistavalta populaatiogenomiikan analyysiohjelmistojen mukauttamiseksi suuriin datamääriin. Erilaisia ​​tiedon osittamis- ja muunnosstrategioita hyödynnetään suorituskyvyn tehostamiseen monivaiheisessa hajautetussa genomidatan prosessoinnissa. Näitä uusia skaalautuvia hajautettuja laskentamenetelmiä tutkitaan tässä väitöskirjassa ja demonstroidaan yleisluontoisella bioinformatiikan analyysiohjelmiston arkkitehtuurilla. Tässä työssä johdatellaan genomiikan ja DNA-sekvensointitekniikoiden peruskäsitteisiin ja esitellään rutiininomaisia ​​bioinformatiikan menetelmiä perustuen hajautetun ja rinnakkaislaskennan periaatteille. Väitöskirjassa edetään kohti täysin hajautettujen ja skaalautuvien bioinformatiikan ohjelmistojen suunnittelua keskittyen populaatiogenomiikan ongelmiin, joissa syötedatan määrät ovat suuria ja analyysitulosten saavuttaminen on hidasta tai jopa mahdotonta tavanomaisella laskennalla. Lopuksi tutkittuja menetelmiä sovelletaan tässä työssä kehitettyihin skaalautuviin populaatiogenomiikan sovelluksiin, joita koestetaan kokogenomidatalla supertietokoneen laskentaklusterissa. Kokeet sisältävät virussekvenssien louhintaa ihmisten metagenominäytteistä, genotyyppien täydentämistä (imputointia) suurista ihmispopulaatioista ja pan-genomisen indeksin pakkaamista sekvenssilinjauksen nopeuttamista varten. Lisäksi pakattua pan-genomia kokeillaan referenssigenomin koostamiseen populaatioon perustuvien varianttien havaitsemista varten

    Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits.

    Get PDF
    To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii, isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions

    Computational methods for large-scale single-cell RNA-seq and multimodal data

    Get PDF
    Emerging single cell genomics technologies such as single cell RNA-seq (scRNA-seq) and single cell ATAC-seq provide new opportunities for discovery of previously unknown cell types, facilitating the study of biological processes such as tumor progression, and delineating molecular mechanism differences between species. Due to the high dimensionality of the data produced by the technologies, computation and mathematics have been the cornerstone in decoding meaningful information from the data. Computational models have been challenged by the exponential growth of the data thanks to the continuing decrease in sequencing costs and growth of large-scale genomic projects such as the Human Cell Atlas. In addition, recent single-cell technologies have enabled us to measure multiple modalities such as transcriptome, protome, and epigenome in the same cell. This requires us to establish new computational methods which can cope with multiple layers of the data. To address these challenges, the main goal of this thesis was to develop computational methods and mathematical models for analyzing large-scale scRNA-seq and multimodal omics data. In particular, I have focused on fundamental single-cell analysis such as clustering and visualization. The most common task in scRNA-seq data analysis is the identification of cell types. Numerous methods have been proposed for this problem with a current focus on methods for the analysis of large scale scRNA-seq data. I developed Specter, a computational method that utilizes recent algorithmic advances in fast spectral clustering and ensemble learning. Specter achieves a substantial improvement in accuracy over existing methods and identifies rare cell types with high sensitivity. Specter allows us to process a dataset comprising 2 million cells in just 26 minutes. Moreover, the analysis of CITE-seq data, that simultaneously provides gene expression and protein levels, showed that Specter is able to incorporate multimodal omics measurements to resolve subtle transcriptomic differences between subpopulations of cells. We have effectively handled big data for clustering analysis using Specter. The question is how to cope with the big data for other downstream analyses such as trajectory inference and data integration. The most simple scheme is to shrink the data by selecting a subset of cells (the sketch) that best represents the full data set. Therefore I developed an algorithm called Sphetcher that makes use of the thresholding technique to efficiently pick representative cells that evenly cover the transcriptomic space occupied by the original data set. I showed that the sketch computed by Sphetcher constitutes a more accurate presentation of the original transcriptomic landscape than existing methods, which leads to a more balanced composition of cell types and a large fraction of rare cell types in the sketch. Sphetcher bridges the gap between the scalability of computational methods and the volume of the data. Moreover, I demonstrated that Sphetcher can incorporate prior information (e.g. cell labels) to inform the inference of the trajectory of human skeletal muscle myoblast differentiation. The biological processes such as development, differentiation, and cell cycle can be monitored by performing single cell sequencing at different time points, each corresponding to a snapshot of the process. A class of computational methods called trajectory inference aims to reconstruct the developmental trajectories from these snapshots. Trajectory inference (TI) methods such as Monocle, can computationally infer a pseudotime variable which serves as a proxy for developmental time. In order to compare two trajectories inferred by TI methods, we need to align the pseudotime between two trajectories. Current methods for aligning trajectories are based on the concept of dynamic time warping, which is limited to simple linear trajectories. Since complex trajectories are common in developmental processes, I adopted arboreal matchings to compare and align complex trajectories with multiple branch points diverting cells into alternative fates. Arboreal matchings were originally proposed in the context of phylogenetic trees and I theoretically linked them to dynamic time warping. A suite of exact and heuristic algorithms for aligning complex trajectories was implemented in a software Trajan. When aligning single-cell trajectories describing human muscle differentiation and myogenic reprogramming, Trajan automatically identifies the core paths from which we are able to reproduce recently reported barriers to reprogramming. In a perturbation experiment, I showed that Trajan correctly maps identical cells in a global view of trajectories, as opposed to a pairwise application of dynamic time warping. Visualization using dimensionality reduction techniques such as t-SNE and UMAP is a fundamental step in the analysis of high-dimensional data. Visualization has played a pivotal role in discovering the dynamic trends in single cell genomics data. I developed j-SNE and j-UMAP as their generalizations to the joint visualization of multimodal omics data, e.g., CITE-seq data. The approach automatically learns the relative importance of each modality in order to obtain a concise representation of the data. When comparing with the conventional approaches, I demonstrated that j-SNE and j-UMAP produce unified embeddings that better agree with known cell types and that harmonize RNA and protein velocity landscapes

    Integrative bioinformatics applications for complex human disease contexts

    Get PDF
    This thesis presents new methods for the analysis of high-throughput data from modern sources in the context of complex human diseases, at the example of a bioinformatics analysis workflow. New measurement techniques improve the resolution with which cellular and molecular processes can be monitored. While RNA sequencing (RNA-seq) measures mRNA expression, single-cell RNA-seq (scRNA-seq) resolves this on a per-cell basis. Long-read sequencing is increasingly used in genomics. With imaging mass spectrometry (IMS) the protein level in tissues is measured spatially resolved. All these techniques induce specific challenges, which need to be addressed with new computational methods. Collecting knowledge with contextual annotations is important for integrative data analyses. Such knowledge is available through large literature repositories, from which information, such as miRNA-gene interactions, can be extracted using text mining methods. After aggregating this information in new databases, specific questions can be answered with traceable evidence. The combination of experimental data with these databases offers new possibilities for data integrative methods and for answering questions relevant for complex human diseases. Several data sources are made available, such as literature for text mining miRNA-gene interactions (Chapter 2), next- and third-generation sequencing data for genomics and transcriptomics (Chapters 4.1, 5), and IMS for spatially resolved proteomics (Chapter 4.4). For these data sources new methods for information extraction and pre-processing are developed. For instance, third-generation sequencing runs can be monitored and evaluated using the poreSTAT and sequ-into methods. The integrative (down-stream) analyses make use of these (heterogeneous) data sources. The cPred method (Chapter 4.2) for cell type prediction from scRNA-seq data was successfully applied in the context of the SARS-CoV-2 pandemic. The robust differential expression (DE) analysis pipeline RoDE (Chapter 6.1) contains a large set of methods for (differential) data analysis, reporting and visualization of RNA-seq data. Topics of accessibility of bioinformatics software are discussed along practical applications (Chapter 3). The developed miRNA-gene interaction database gives valuable insights into atherosclerosis-relevant processes and serves as regulatory network for the prediction of active miRNA regulators in RoDE (Chapter 6.1). The cPred predictions, RoDE results, scRNA-seq and IMS data are unified as input for the 3D-index Aorta3D (Chapter 6.2), which makes atherosclerosis related datasets browsable. Finally, the scRNA-seq analysis with subsequent cPred cell type prediction, and the robust analysis of bulk-RNA-seq datasets, led to novel insights into COVID-19. Taken all discussed methods together, the integrative analysis methods for complex human disease contexts have been improved at essential positions.Die Dissertation beschreibt Methoden zur Prozessierung von aktuellen Hochdurchsatzdaten, sowie Verfahren zu deren weiterer integrativen Analyse. Diese findet Anwendung vor allem im Kontext von komplexen menschlichen Krankheiten. Neue Messtechniken erlauben eine detailliertere Beobachtung biomedizinischer Prozesse. Mit RNA-Sequenzierung (RNA-seq) wird mRNA-Expression gemessen, mit Hilfe von moderner single-cell-RNA-seq (scRNA-seq) sogar für (sehr viele) einzelne Zellen. Long-Read-Sequenzierung wird zunehmend zur Sequenzierung ganzer Genome eingesetzt. Mittels bildgebender Massenspektrometrie (IMS) können Proteine in Geweben räumlich aufgelöst quantifiziert werden. Diese Techniken bringen spezifische Herausforderungen mit sich, die mit neuen bioinformatischen Methoden angegangen werden müssen. Für die integrative Datenanalyse ist auch die Gewinnung von geeignetem Kontextwissen wichtig. Wissenschaftliche Erkenntnisse werden in Artikeln veröffentlicht, die über große Literaturdatenbanken zugänglich sind. Mittels Textmining können daraus Informationen extrahiert werden, z.B. miRNA-Gen-Interaktionen, die in eigenen Datenbank aggregiert werden um spezifische Fragen mit nachvollziehbaren Belegen zu beantworten. In Kombination mit experimentellen Daten bieten sich so neue Möglichkeiten für integrative Methoden. Durch die Extraktion von Rohdaten und deren Vorprozessierung werden mehrere Datenquellen erschlossen, wie z.B. Literatur für Textmining von miRNA-Gen-Interaktionen (Kapitel 2), Long-Read- und RNA-seq-Daten für Genomics und Transcriptomics (Kapitel 4.2, 5) und IMS für Protein-Messungen (Kapitel 4.4). So dienen z.B. die poreSTAT und sequ-into Methoden der Vorprozessierung und Auswertung von Long-Read-Sequenzierungen. In der integrativen (down-stream) Analyse werden diese (heterogenen) Datenquellen verwendet. Für die Bestimmung von Zelltypen in scRNA-seq-Experimenten wurde die cPred-Methode (Kapitel 4.2) erfolgreich im Kontext der SARS-CoV-2-Pandemie eingesetzt. Auch die robuste Pipeline RoDE fand dort Anwendung, die viele Methoden zur (differentiellen) Datenanalyse, zum Reporting und zur Visualisierung bereitstellt (Kapitel 6.1). Themen der Benutzbarkeit von (bioinformatischer) Software werden an Hand von praktischen Anwendungen diskutiert (Kapitel 3). Die entwickelte miRNA-Gen-Interaktionsdatenbank gibt wertvolle Einblicke in Atherosklerose-relevante Prozesse und dient als regulatorisches Netzwerk für die Vorhersage von aktiven miRNA-Regulatoren in RoDE (Kapitel 6.1). Die cPred-Methode, RoDE-Ergebnisse, scRNA-seq- und IMS-Daten werden im 3D-Index Aorta3D (Kapitel 6.2) zusammengeführt, der relevante Datensätze durchsuchbar macht. Die diskutierten Methoden führen zu erheblichen Verbesserungen für die integrative Datenanalyse in komplexen menschlichen Krankheitskontexten
    corecore