59 research outputs found

    Ecosystemic Evolution Feeded by Smart Systems

    Get PDF
    Information Society is advancing along a route of ecosystemic evolution. ICT and Internet advancements, together with the progression of the systemic approach for enhancement and application of Smart Systems, are grounding such an evolution. The needed approach is therefore expected to evolve by increasingly fitting into the basic requirements of a significant general enhancement of human and social well-being, within all spheres of life (public, private, professional). This implies enhancing and exploiting the net-living virtual space, to make it a virtuous beneficial integration of the real-life space. Meanwhile, contextual evolution of smart cities is aiming at strongly empowering that ecosystemic approach by enhancing and diffusing net-living benefits over our own lived territory, while also incisively targeting a new stable socio-economic local development, according to social, ecological, and economic sustainability requirements. This territorial focus matches with a new glocal vision, which enables a more effective diffusion of benefits in terms of well-being, thus moderating the current global vision primarily fed by a global-scale market development view. Basic technological advancements have thus to be pursued at the system-level. They include system architecting for virtualization of functions, data integration and sharing, flexible basic service composition, and end-service personalization viability, for the operation and interoperation of smart systems, supporting effective net-living advancements in all application fields. Increasing and basically mandatory importance must also be increasingly reserved for human–technical and social–technical factors, as well as to the associated need of empowering the cross-disciplinary approach for related research and innovation. The prospected eco-systemic impact also implies a social pro-active participation, as well as coping with possible negative effects of net-living in terms of social exclusion and isolation, which require incisive actions for a conformal socio-cultural development. In this concern, speed, continuity, and expected long-term duration of innovation processes, pushed by basic technological advancements, make ecosystemic requirements stricter. This evolution requires also a new approach, targeting development of the needed basic and vocational education for net-living, which is to be considered as an engine for the development of the related ‘new living know-how’, as well as of the conformal ‘new making know-how’

    Cross-layer energy efficiency of plc systems for smart grid applications

    Get PDF
    Though opinions are still divided over the specific choices of technology for smart grid, there is a consensus that heterogeneous communications network is most appropriate. Power line communication (PLC) is promising because it is readily available and it aligns with the natural topology of power distribution network. One of the emerging realities is that the communication system enabling smart grid must be energy-efficient. This thesis employs a cross-layer approach to address energy efficiency of PLC networks in different smart grid scenarios. At network layer, this work exploits the topology of a PLC-enabled advanced metering infrastructure (AMI) to improve the probability of successful packet delivery across the network. The technique, termed AMI clustering, leverages the traditional structure of the low voltage (LV) network by organising the smart meters into clusters and locally aggregating their readings. Improvement in packet delivery inherently reduces energy wastage. Next, the adaptation layer exploits the low data rate transmission techniques to reduce the energy requirements of PLC nodes. To achieve that, this work developed a network model in NS-3 (an open-source network simulator) that considers PLC transceivers as resource-constrained devices and interconnects them to emulate home energy management system (HEMS). The model was validated with experimental results which showed that in the home area network (HAN), low-rate applications such as energy management can be supported over low-power PLC networks. Furthermore, at physical layer, this thesis proposes a more energy-efficient multi-carrier modulation scheme than the orthogonal frequency division multiplexing (OFDM) used in most of the current PLC systems. OFDM is widely known for its high peak-to-average-power ratio (PAPR) which degrades energy efficiency of the systems. This thesis found that by employing vector- OFDM (V-OFDM), power requirements of PLC transmitter can be reduced. The results also showed the energy efficiency can be further improved by using a dynamic noise cancellation technique such as dynamic peak-based threshold estimation (DPTE) at the receiver. By applying the proposed methods, packet delivery can be improved by 3% at network layer (which conserves energy) and reduced data rate can save about 2.6014 dB in transmit power. Finally, at physical layer, V-OFDM and DPTE can respectively provide 5.8 dB and 2.1 dB reduction in power requirements of the PLC transceivers. These signify that if V-OFDM is combined with DPTE, future PLC modems could benefit from energy-efficient power amplifiers at reduced cost

    Towards Intelligent Energy-Aware Self-Organised Cellular Networks (iSONs)

    Get PDF
    This thesis investigates the application of intelligent energy-aware resource management techniques for current and future wireless broadband deployments. Energy-aware topology management is firstly studied aiming at dynamically managing the network topology by fine tuning the status of network entities (dormant / active) to scale the energy consumption with traffic demands. This is studied through an analytical model based on queueing theory and through simulation to help understand its operational capabilities under a range of traffic conditions. Advanced radio resource management is also investigated. This reduces the number of nodes engaged in the service whenever possible reducing the energy consumption at low and medium traffic loads while enhancing system capacity and QoS when the traffic load is high. As an enabling technology for self-awareness and adaptability, Reinforcement Learning (RL) is applied to manage network resources in an intelligent, self-aware, and adaptable manner. This is complemented with a range of novel cognitive learning and reasoning algorithms which are capable of translating past experience into valuable sets of information in order to optimise decisions taken as part of the radio resource and topology management functionalities. Dependencies between the proposed techniques are also addressed formulating an intelligent self-adaptable approach, which is capable of dynamically deactivating redundant nodes and redirecting traffic appropriately while enhancing system capacity and QoS

    A Review and Synthesis of the Outcomes from Low Carbon Networks Fund Projects

    Get PDF
    The Low Carbon Networks Fund (LCNF) was established by Ofgem in 2009 with an objective to “help Distribution Network Operators (DNOs) understand how they provide security of supply at value for money and facilitate transition to the low carbon economy”. The £500m fund operated in a tiered format, funding small scale projects as Tier 1 and running a Tier 2 annual competitive process to fund a smaller number of large projects. By 31st March 2015, forty Tier 1 projects and twenty-three Tier 2 projects had been approved with project budgets totalling £29.5m and £220.3m respectively. The LCNF governance arrangements state that projects should focus on the trialling of: new equipment (more specifically, that unproven in GB), novel arrangements or applications of existing equipment, novel operational practices, or novel commercial arrangements. The requirement that learning gained from projects could be disseminated was a key feature of the LCNF. The motivation for the review reported here was a recognition that significant learning and data had been generated from a large volume of project activity but, with so many individual reports published, that it was difficult for outside observers to identify clear messages with respect to the innovations investigated under the programme. This review is therefore intended to identify, categorise and synthesise the learning outcomes published by LCNF projects up to December 2015

    The Cloud-to-Thing Continuum

    Get PDF
    The Internet of Things offers massive societal and economic opportunities while at the same time significant challenges, not least the delivery and management of the technical infrastructure underpinning it, the deluge of data generated from it, ensuring privacy and security, and capturing value from it. This Open Access Pivot explores these challenges, presenting the state of the art and future directions for research but also frameworks for making sense of this complex area. This book provides a variety of perspectives on how technology innovations such as fog, edge and dew computing, 5G networks, and distributed intelligence are making us rethink conventional cloud computing to support the Internet of Things. Much of this book focuses on technical aspects of the Internet of Things, however, clear methodologies for mapping the business value of the Internet of Things are still missing. We provide a value mapping framework for the Internet of Things to address this gap. While there is much hype about the Internet of Things, we have yet to reach the tipping point. As such, this book provides a timely entrée for higher education educators, researchers and students, industry and policy makers on the technologies that promise to reshape how society interacts and operates

    The impact of clustering of DFI on urban economic development in China: the case of Qingdao development zones.

    Get PDF
    With the dramatic increase in direct foreign investment (DFI) in China over the past two decades, understanding the role of DFI in her economic development has become essential. This thesis focuses on the impact of the clustering of DFI on urban economic development through a case study of the Economic and Technological Development Zone (ETDZ) and High-tech Industrial Park (HTIP) in Qingdao, Shandong Province. The concept of 'cluster' has become an object of desire for many cities and regions, resting on the widely accepted assumption that increased specialisation and external economies in clusters may contribute to urban and regional economic development Little research has been conducted, however, as to the underlying role of DFI in fostering industrial clusters. This thesis attempts to fill this gap by examining the supplier-buyer linkages between foreign invested firms and local firms within the electrical and electronic sectors in development zones built by the Chinese government, hence investigating the mechanisms of how such a linkage may increase productivity and promote local economic development. The present research utilises 21 detailed firm case studies and describes the process and mechanisms of urban economic development through the interaction between foreign invested firms and local firms in development zones. In addition, with the help of quantitative methods, including regression, shift-share and location quotient (LQ) analyses, the thesis quantifies the macroeconomic impact of the clustering of DFI on local economic development. This thesis concludes that large domestic firms have played a pivotal role in forming the local industrial cluster, whereas foreign invested firms have played a supporting role. However, the foreign invested firms act as a bridge between large Chinese firms and their local suppliers by being both a main supplier (first-tier supplier) for large Chinese firms and a main buyer of raw materials and components for local suppliers (second-tier and third-tier suppliers). Through such a relationship, foreign invested firms, as innovators, enhance quality control management in local industries and facilitate the technology transfer for local suppliers. Thus, local suppliers and foreign invested firms provide the stable quality parts and components for the main domestic firms who play the leading role in forming clusters

    Physical Unclonability Framework for the Internet of Things

    Get PDF
    Ph. D. ThesisThe rise of the Internet of Things (IoT) creates a tendency to construct unified architectures with a great number of edge nodes and inherent security risks due to centralisation. At the same time, security and privacy defenders advocate for decentralised solutions which divide the control and the responsibility among the entirety of the network nodes. However, spreading secrets among several parties also expands the attack surface. This conflict is in part due to the difficulty in differentiating between instances of the same hardware, which leads to treating physically distinct devices as identical. Harnessing the uniqueness of each connected device and injecting it into security protocols can provide solutions to several common issues of the IoT. Secrets can be generated directly from this uniqueness without the need to manually embed them into devices, reducing both the risk of exposure and the cost of managing great numbers of devices. Uniqueness can then lead to the primitive of unclonability. Unclonability refers to ensuring the difficulty of producing an exact duplicate of an entity via observing and measuring the entity’s features and behaviour. Unclonability has been realised on a physical level via the use of Physical Unclonable Functions (PUFs). PUFs are constructions that extract the inherent unclonable features of objects and compound them into a usable form, often that of binary data. PUFs are also exceptionally useful in IoT applications since they are low-cost, easy to integrate into existing designs, and have the potential to replace expensive cryptographic operations. Thus, a great number of solutions have been developed to integrate PUFs in various security scenarios. However, methods to expand unclonability into a complete security framework have not been thoroughly studied. In this work, the foundations are set for the development of such a framework through the formulation of an unclonability stack, in the paradigm of the OSI reference model. The stack comprises layers propagating the primitive from the unclonable PUF ICs, to devices, network links and eventually unclonable systems. Those layers are introduced, and work towards the design of protocols and methods for several of the layers is presented. A collection of protocols based on one or more unclonable tokens or authority devices is proposed, to enable the secure introduction of network nodes into groups or neighbourhoods. The role of the authority devices is that of a consolidated, observable root of ownership, whose physical state can be verified. After their introduction, nodes are able to identify and interact with their peers, exchange keys and form relationships, without the need of continued interaction with the authority device. Building on this introduction scheme, methods for establishing and maintaining unclonable links between pairs of nodes are introduced. These pairwise links are essential for the construction of relationships among multiple network nodes, in a variety of topologies. Those topologies and the resulting relationships are formulated and discussed. While the framework does not depend on specific PUF hardware, SRAM PUFs are chosen as a case study since they are commonly used and based on components that are already present in the majority of IoT devices. In the context of SRAM PUFs and with a view to the proposed framework, practical issues affecting the adoption of PUFs in security protocols are discussed. Methods of improving the capabilities of SRAM PUFs are also proposed, based on experimental data.School of Engineering Newcastle Universit

    Autonomous and decentralised energy markets in smart DC microgrids

    Get PDF
    Dissertation (MEng (Electrical Engineering))--University of Pretoria, 2022.Microgrids are gaining popularity due to their ability to integrate distributed renewable energy generation. In addition, direct current (DC) - based operation results in significantly higher operational efficiency. However, it exhibits energy drawbacks such as congestion, instability, and imbalances. Incorporating demand management through electricity markets governed by dynamic pricing presents a potential solution to these challenges. Concerns about unfair electricity pricing and uneven market power hinder electricity market adoption. This research aims to facilitate decentralised and transparent energy markets with a high-accuracy dynamic pricing scheme to address the critical arguments against current electricity markets.Electrical, Electronic and Computer EngineeringMEng (Electrical Engineering)Unrestricte
    corecore