30 research outputs found

    Interictal Network Dynamics in Paediatric Epilepsy Surgery

    Get PDF
    Epilepsy is an archetypal brain network disorder. Despite two decades of research elucidating network mechanisms of disease and correlating these with outcomes, the clinical management of children with epilepsy does not readily integrate network concepts. For example, network measures are not used in presurgical evaluation to guide decision making or surgical management plans. The aim of this thesis was to investigate novel network frameworks from the perspective of a clinician, with the explicit aim of finding measures that may be clinically useful and translatable to directly benefit patient care. We examined networks at three different scales, namely macro (whole brain diffusion MRI), meso (subnetworks from SEEG recordings) and micro (single unit networks) scales, consistently finding network abnormalities in children being evaluated for or undergoing epilepsy surgery. This work also provides a path to clinical translation, using frameworks such as IDEAL to robustly assess the impact of these new technologies on management and outcomes. The thesis sets up a platform from which promising computational technology, that utilises brain network analyses, can be readily translated to benefit patient care

    Development of A Versatile Multichannel CWNIRS Instrument for Optical Brain-Computer Interface Applications

    Get PDF
    This thesis describes the design, development, and implementation of a versatile multichannel continuous-wave near-infrared spectroscopy (CWNIRS) instrument for brain-computer interface (BCI) applications. Specifically, it was of interest to assess what gains could be achieved by using a multichannel device compared to the single channel device implemented by Coyle in 2004. Moreover, the multichannel approach allows for the assessment of localisation of functional tasks in the cerebral cortex, and can identify lateralisation of haemodynamic responses to motor events. The approach taken to extend single channel to multichannel was based on a software-controlled interface. This interface allowed flexibility in the control of individual optodes including their synchronisation and modulation (AM, TDM, CDMA). Furthermore, an LED driver was developed for custom-made triple-wavelength LEDs. The system was commissioned using a series of experiments to verify the performance of individual components in the system. The system was then used to carry out a set of functional studies including motor imagery and cognitive tasks. The experimental protocols based on motor imagery and overt motor tasks were verified by comparison with fMRI. The multichannel approach identified stroke rehabilitation as a new application area for optical BCI. In addition, concentration changes in deoxyhaemoglobin were identified as being a more localised indicator of functional activity, which is important for effective BCI design. An assessment was made on the effect of the duration of the stimulus period on the haemodynamic signals. This demonstrated the possible benefits of using a shorter stimulus period to reduce the adverse affects of low blood pressure oscillations. i

    Development of A Versatile Multichannel CWNIRS Instrument for Optical Brain-Computer Interface Applications

    Get PDF
    This thesis describes the design, development, and implementation of a versatile multichannel continuous-wave near-infrared spectroscopy (CWNIRS) instrument for brain-computer interface (BCI) applications. Specifically, it was of interest to assess what gains could be achieved by using a multichannel device compared to the single channel device implemented by Coyle in 2004. Moreover, the multichannel approach allows for the assessment of localisation of functional tasks in the cerebral cortex, and can identify lateralisation of haemodynamic responses to motor events. The approach taken to extend single channel to multichannel was based on a software-controlled interface. This interface allowed flexibility in the control of individual optodes including their synchronisation and modulation (AM, TDM, CDMA). Furthermore, an LED driver was developed for custom-made triple-wavelength LEDs. The system was commissioned using a series of experiments to verify the performance of individual components in the system. The system was then used to carry out a set of functional studies including motor imagery and cognitive tasks. The experimental protocols based on motor imagery and overt motor tasks were verified by comparison with fMRI. The multichannel approach identified stroke rehabilitation as a new application area for optical BCI. In addition, concentration changes in deoxyhaemoglobin were identified as being a more localised indicator of functional activity, which is important for effective BCI design. An assessment was made on the effect of the duration of the stimulus period on the haemodynamic signals. This demonstrated the possible benefits of using a shorter stimulus period to reduce the adverse affects of low blood pressure oscillations. i

    Computer-Assisted Planning and Robotics in Epilepsy Surgery

    Get PDF
    Epilepsy is a severe and devastating condition that affects ~1% of the population. Around 30% of these patients are drug-refractory. Epilepsy surgery may provide a cure in selected individuals with drug-resistant focal epilepsy if the epileptogenic zone can be identified and safely resected or ablated. Stereoelectroencephalography (SEEG) is a diagnostic procedure that is performed to aid in the delineation of the seizure onset zone when non-invasive investigations are not sufficiently informative or discordant. Utilizing a multi-modal imaging platform, a novel computer-assisted planning (CAP) algorithm was adapted, applied and clinically validated for optimizing safe SEEG trajectory planning. In an initial retrospective validation study, 13 patients with 116 electrodes were enrolled and safety parameters between automated CAP trajectories and expert manual plans were compared. The automated CAP trajectories returned statistically significant improvements in all of the compared clinical metrics including overall risk score (CAP 0.57 +/- 0.39 (mean +/- SD) and manual 1.00 +/- 0.60, p < 0.001). Assessment of the inter-rater variability revealed there was no difference in external expert surgeon ratings. Both manual and CAP electrodes were rated as feasible in 42.8% (42/98) of cases. CAP was able to provide feasible electrodes in 19.4% (19/98), whereas manual planning was able to generate a feasible electrode in 26.5% (26/98) when the alternative generation method was not feasible. Based on the encouraging results from the retrospective analysis a prospective validation study including an additional 125 electrodes in 13 patients was then undertaken to compare CAP to expert manual plans from two neurosurgeons. The manual plans were performed separately and blindly from the CAP. Computer-generated trajectories were found to carry lower risks scores (absolute difference of 0.04 mm (95% CI = -0.42-0.01), p = 0.04) and were subsequently implanted in all cases without complication. The pipeline has been fully integrated into the clinical service and has now replaced manual SEEG planning at our institution. Further efforts were then focused on the distillation of optimal entry and target points for common SEEG trajectories and applying machine learning methods to develop an active learning algorithm to adapt to individual surgeon preferences. Thirty-two patients were prospectively enrolled in the study. The first 12 patients underwent prospective CAP planning and implantation following the pipeline outlined in the previous study. These patients were used as a training set and all of the 108 electrodes after successful implantation were normalized to atlas space to generate ‘spatial priors’, using a K-Nearest Neighbour (K-NN) classifier. A subsequent test set of 20 patients (210 electrodes) were then used to prospectively validate the spatial priors. From the test set, 78% (123/157) of the implanted trajectories passed through both the entry and target spatial priors defined from the training set. To improve the generalizability of the spatial priors to other neurosurgical centres undertaking SEEG and to take into account the potential for changing institutional practices, an active learning algorithm was implemented. The K-NN classifier was shown to dynamically learn and refine the spatial priors. The progressive refinement of CAP SEEG planning outlined in this and previous studies has culminated in an algorithm that not only optimizes the surgical heuristics and risk scores related to SEEG planning but can also learn from previous experience. Overall, safe and feasible trajectory schema were returning in 30% of the time required for manual SEEG planning. Computer-assisted planning was then applied to optimize laser interstitial thermal therapy (LITT) trajectory planning, which is a minimally invasive alternative to open mesial temporal resections, focal lesion ablation and anterior 2/3 corpus callosotomy. We describe and validate the first CAP algorithm for mesial temporal LITT ablations for epilepsy treatment. Twenty-five patients that had previously undergone LITT ablations at a single institution and with a median follow up of 2 years were included. Trajectory parameters for the CAP algorithm were derived from expert consensus to maximize distance from vasculature and ablation of the amygdalohippocampal complex, minimize collateral damage to adjacent brain structures whilst avoiding transgression of the ventricles and sulci. Trajectory parameters were also optimized to reduce the drilling angle to the skull and overall catheter length. Simulated cavities attributable to the CAP trajectories were calculated using a 5-15 mm ablation diameter. In comparison to manually planned and implemented LITT trajectories,CAP resulted in a significant increase in the percentage ablation of the amygdalohippocampal complex (manual 57.82 +/- 15.05% (mean +/- S.D.) and unablated medial hippocampal head depth (manual 4.45 +/- 1.58 mm (mean +/- S.D.), CAP 1.19 +/- 1.37 (mean +/- S.D.), p = 0.0001). As LITT ablation of the mesial temporal structures is a novel procedure there are no established standards for trajectory planning. A data-driven machine learning approach was, therefore, applied to identify hitherto unknown CAP trajectory parameter combinations. All possible combinations of planning parameters were calculated culminating in 720 unique combinations per patient. Linear regression and random forest machine learning algorithms were trained on half of the data set (3800 trajectories) and tested on the remaining unseen trajectories (3800 trajectories). The linear regression and random forest methods returned good predictive accuracies with both returning Pearson correlations of ρ = 0.7 and root mean squared errors of 0.13 and 0.12 respectively. The machine learning algorithm revealed that the optimal entry points were centred over the junction of the inferior occipital, middle temporal and middle occipital gyri. The optimal target points were anterior and medial translations of the centre of the amygdala. A large multicenter external validation study of 95 patients was then undertaken comparing the manually planned and implemented trajectories, CAP trajectories targeting the centre of the amygdala, the CAP parameters derived from expert consensus and the CAP trajectories utilizing the machine learning derived parameters. Three external blinded expert surgeons were then selected to undertake feasibility ratings and preference rankings of the trajectories. CAP generated trajectories result in a significant improvement in many of the planning metrics, notably the risk score (manual 1.3 +/- 0.1 (mean +/- S.D.), CAP 1.1 +/- 0.2 (mean +/- S.D.), p<0.000) and overall ablation of the amygdala (manual 45.3 +/- 22.2 % (mean +/- S.D.), CAP 64.2 +/- 20 % (mean +/- S.D.), p<0.000). Blinded external feasibility ratings revealed that manual trajectories were less preferable than CAP planned trajectories with an estimated probability of being ranked 4th (lowest) of 0.62. Traditional open corpus callosotomy requires a midline craniotomy, interhemispheric dissection and disconnection of the rostrum, genu and body of the corpus callosum. In cases where drop attacks persist a completion corpus callosotomy to disrupt the remaining fibres in the splenium is then performed. The emergence of LITT technology has raised the possibility of being able to undertake this procedure in a minimally invasive fashion and without the need for a craniotomy using two or three individual trajectories. Early case series have shown LITT anterior two-thirds corpus callosotomy to be safe and efficacious. Whole-brain probabilistic tractography connectomes were generated utilizing 3-Tesla multi-shell imaging data and constrained spherical deconvolution (CSD). Two independent blinded expert neurosurgeons with experience of performing the procedure using LITT then planned the trajectories in each patient following their current clinical practice. Automated trajectories returned a significant reduction in the risk score (manual 1.3 +/- 0.1 (mean +/- S.D.), CAP 1.1 +/- 0.1 (mean +/- S.D.), p<0.000). Finally, we investigate the different methods of surgical implantation for SEEG electrodes. As an initial study, a systematic review and meta-analysis of the literature to date were performed. This revealed a wide variety of implantation methods including traditional frame-based, frameless, robotic and custom-3D printed jigs were being used in clinical practice. Of concern, all comparative reports from institutions that had changed from one implantation method to another, such as following the introduction of robotic systems, did not undertake parallel-group comparisons. This suggests that patients may have been exposed to risks associated with learning curves and potential harms related to the new device until the efficacy was known. A pragmatic randomized control trial of a novel non-CE marked robotic trajectory guidance system (iSYS1) was then devised. Before clinical implantations began a series of pre-clinical investigations utilizing 3D printed phantom heads from previously implanted patients was performed to provide pilot data and also assess the surgical learning curve. The surgeons had comparatively little clinical experience with the new robotic device which replicates the introduction of such novel technologies to clinical practice. The study confirmed that the learning curve with the iSYS1 devices was minimal and the accuracies and workflow were similar to the conventional manual method. The randomized control trial represents the first of its kind for stereotactic neurosurgical procedures. Thirty-two patients were enrolled with 16 patients randomized to the iSYS1 intervention arm and 16 patients to the manual implantation arm. The intervention allocation was concealed from the patients. The surgical and research team could be not blinded. Trial management, independent data monitoring and trial steering committees were convened at four points doing the trial (after every 8 patients implanted). Based on the high level of accuracy required for both methods, the main distinguishing factor would be the time to achieve the alignment to the prespecified trajectory. The primary outcome for comparison, therefore, was the time for individual SEEG electrode implantation. Secondary outcomes included the implantation accuracy derived from the post-operative CT scan, infection, intracranial haemorrhage and neurological deficit rates. Overall, 32 patients (328 electrodes) completed the trial (16 in each intervention arm) and the baseline demographics were broadly similar between the two groups. The time for individual electrode implantation was significantly less with the iSYS1 device (median of 3.36 (95% CI 5.72 to 7.07) than for the PAD group (median of 9.06 minutes (95% CI 8.16 to 10.06), p=0.0001). Target point accuracy was significantly greater with the PAD (median of 1.58 mm (95% CI 1.38 to 1.82) compared to the iSYS1 (median of 1.16 mm (95% CI 1.01 to 1.33), p=0.004). The difference between the target point accuracies are not clinically significant for SEEG but may have implications for procedures such as deep brain stimulation that require higher placement accuracy. All of the electrodes achieved their respective intended anatomical targets. In 12 of 16 patients following robotic implantations, and 10 of 16 following manual PAD implantations a seizure onset zone was identified and resection recommended. The aforementioned systematic review and meta-analysis were updated to include additional studies published during the trial duration. In this context, the iSYS1 device entry and target point accuracies were similar to those reported in other published studies of robotic devices including the ROSA, Neuromate and iSYS1. The PAD accuracies, however, outperformed the previously published results for other frameless stereotaxy methods. In conclusion, the presented studies report the integration and validation of a complex clinical decision support software into the clinical neurosurgical workflow for SEEG planning. The stereotactic planning platform was further refined by integrating machine learning techniques and also extended towards optimisation of LITT trajectories for ablation of mesial temporal structures and corpus callosotomy. The platform was then used to seamlessly integrate with a novel trajectory planning software to effectively and safely guide the implantation of the SEEG electrodes. Through a single-blinded randomised control trial, the ISYS1 device was shown to reduce the time taken for individual electrode insertion. Taken together, this work presents and validates the first fully integrated stereotactic trajectory planning platform that can be used for both SEEG and LITT trajectory planning followed by surgical implantation through the use of a novel trajectory guidance system

    Scientific poster session

    Get PDF

    Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG based Source Localization in the Human Brain

    Get PDF
    The inverse problem in Electro- and Magneto-EncephaloGraphy (EEG/MEG) aims at reconstructing the underlying current distribution in the human brain using potential differences and/or magnetic fluxes that are measured non-invasively directly, or at a close distance, from the head surface. The solution requires repeated computation of the forward problem, i.e., the simulation of EEG and MEG fields for a given dipolar source in the brain using a volume-conduction model of the head. The associated differential equations are derived from the Maxwell equations. Not only do various head tissues exhibit different conductivities, some of them are also anisotropic conductors as, e.g., skull and brain white matter. To our knowledge, previous work has not extensively investigated the impact of modeling tissue anisotropy on source reconstruction. Currently, there are no readily available methods that allow direct conductivity measurements. Furthermore, there is still a lack of sufficiently powerful software packages that would yield significant reduction of the computation time involved in such complex models hence satisfying the time-restrictions for the solution of the inverse problem. In this dissertation, techniques of multimodal Magnetic Resonance Imaging (MRI) are presented in order to generate high-resolution realistically shaped anisotropic volume conductor models. One focus is the presentation of an improved segmentation of the skull by means of a bimodal T1/PD-MRI approach. The eigenvectors of the conductivity tensors in anisotropic white matter are determined using whole head Diffusion-Tensor-MRI. The Finite Element (FE) method in combination with a parallel algebraic multigrid solver yields a highly efficient solution of the forward problem. After giving an overview of state-of-the-art inverse methods, new regularization concepts are presented. Next, the sensitivity of inverse methods to tissue anisotropy is tested. The results show that skull anisotropy affects significantly EEG source reconstruction whereas white matter anisotropy affects both EEG and MEG source reconstructions. Therefore, high-resolution FE forward modeling is crucial for an accurate solution of the inverse problem in EEG and MEG.Motivation und Einordnung: Seit nun fast drei Jahrzehnten werden im Bereich der Kognitionswissenschaften und in klinischer Forschung und Routine die Quellen elektrischer Aktivitaet im menschlichen Gehirn anhand ihrer ueber das Elektroenzephalogramm (EEG) an der Kopfoberflaeche gemessenen Potentialverteilung bzw. ihres ueber das Magnetoenzephalogramm (MEG) in einigen Zentimetern Entfernung davon gemessenen magnetischen Flusses rekonstruiert. Im Vergleich zu anderen funktionellen Bildgebungsmethoden wie z.B. die Positronen-Emissions-Tomographie (PET) oder die funktionelle Magnetresonanztomographie (fMRT) hat die EEG/MEG-Quellrekonstruktion den Vorteil einer sehr hohen zeitlichen Aufloesung. Die gemessene Aktivitaet ist das Resultat von Ionenbewegungen in aktivierten kortikalen Regionen des Gehirns, den sog. Primaerstroemen. Schon im Jahr 1949 wurden erstmals die Primaerstroeme ueber Stromdipole mathematisch modelliert. Der Primaerstrom erzeugt R\'uckstr\'ome im leitf\'ahigen Gewebe des Kopfes, die sog. {\em Sekund\'arstr\'ome}. Die Rekonstruktion der Dipolquellen wird das {\em EEG/MEG inverse Problem} genannt. Dessen L\'osung erfordert die wiederholte Berechnung des {\em Vorw\'arts\-problems}, d.h. der Simulation der EEG/MEG-Feldverteilung f\'ur eine gegebene Dipolquelle im Gehirn. Ein erstes Anwendungsgebiet f\/indet sich in der Diagnose und Therapie von pharma-resistenten Epilepsien, von denen ca. 0,25\% der Weltbev\'olkerung betroffen sind und f\'ur die sich in den letzten Jahrzehnten eine systematische chirurgische Behandlung ent\-wickelt hat. Voraussetzung f\'ur einen die restlichen Gehirnregionen schonenden chirurgischen Eingrif\/f ist die Kenntnis der Lage und Ausdehnung der epileptischen Zentren. Bisher wurden diese Charakteristika in den Patienten stark belastenden invasiven Untersuchungen wie zum Beispiel Subdural- oder Tiefen-Elektroden gewonnen. Die bioelektrischen Signale von Epilepsiekranken weisen zwischen den Anfallsereignissen sog. interiktale Spikes auf. Die nicht-invasive Messung des EEG/MEG dieser interiktalen Spikes und die anschlie{\ss}ende Berechnung des epileptischen Zentrums belastet den Patienten nicht. Ein weiteres Anwendungsfeld ist die pr\'aoperative Ermittlung der Lage wichtiger funk\-tio\-nell-zu\-sam\-men\-h\'angender Zentren im Gehirn, z.B.~des prim\'ar-mo\-to\-ri\-schen, des prim\'ar-au\-di\-to\-rischen oder prim\'ar-somatosensorischen Cortex. Bei Operationen in diesen Bereichen (z.B.~Tumoroperationen) k\'onnten L\'ahmungen, H\'or- und Sensibilit\'atsst\'orungen vermieden werden. Dazu werden \'uber akustische oder sensorische Reize charakteristische Signale evoziert und \'uber Summationstechniken sichtbar gemacht. Durch das L\'osen des inversen Problems wird versucht, die zugrunde liegende Quellstruktur zu ermitteln. Neben den aufgef\'uhrten klinischen Anwendungen ergeben sich auch zahlreiche Anwendungsfelder in der Kognitionswissenschaft. Von Interesse sind z.B.~funktionelle Zusammenh\'ange im Gehirn und die Aufdeckung der aktivierten Areale w\'ahrend der Verarbeitung eines Reizes, wie z.B. der Sprachverarbeitung im Gehirn. Die L\'osung des Vorw\'artsproblems impliziert die Mo\-del\-lierung des Kopfes als Volumenleiter. Es ist bekannt, dass in makroskopischer Hinsicht Gewebe wie die Kopfhaut, der Sch\'adel, die Zerebrospinalfl\'ussigkeit (engl.: CSF) und die Hirngewebe graue und wei{\ss}e Substanz (engl.: GM und WM) verschiedene Leitf\'ahigkeiten besitzen. Der menschliche Sch\'adel ist aus drei Schichten aufgebaut, eine relativ gut leitf\'ahige spongi\'ose Schicht wird von zwei stark isolierenden Schichten, den \'au{\ss}eren und inneren Kompakta, eingeschlossen. In radialer Richtung durch den Sch\'adel handelt es sich also um eine Reihenschaltung von hohem, niedrigem und hohem Widerstand, wohingegen in den tangentialen Richtungen die Leiter parallel geschaltet sind. Als Ganzes gesehen besitzt der Sch\'adel demnach eine richtungsabh\'angige oder {\em anisotrope} Leitf\'ahigkeit mit einem gemessenen Verh\'altnis von bis zu 1 zu 10. F\'ur die faserige WM wurde ebenfalls eine Anisotropie mit einem \'ahnlichen Verh\'altnis (senkrecht zu parallel zu den Fasern) nachgewiesen. Leider existiert bis heute keine direkte Methode, die Leitf\'ahigkeit der WM nicht-invasiv in gen\'ugender Aufl\'osung zu ermittelt. Seit einigen Jahren werden aller\-dings Formalismen diskutiert, die den gesuchten Leitf\'ahigkeitstensor in Bezug setzen zum Wasserdiffusionstensor, der in WM nicht-invasiv \'uber die Diffusionstensor-MRT (DT-MRT) gemessen werden kann. Nat\'urlich wird keine fundamentale Beziehung zwischen der freien Beweglichkeit von Ionen und Wasserteilchen angenommen, sondern lediglich, dass die eingeschr\'ankte Mobilit\'at \'uber die Fasergeometrie der WM in Beziehung steht. Heutzutage werden verschiedene Ans\'atze f\'ur die L\'osung des Vor\-w\'arts\-pro\-blems genutzt und mit steigender Genauigkeit der Modellierung des Kopfvolumenleiters erh\'oht sich die Komplexit\'at der numerischen Feldberechnungen. Einfache Modelle, die immer noch am h\'aufigsten Gebrauchten, beschreiben den Kopf als Mehrschalenkugel-Leiter mit \'ublicherweise drei Schichten, die die Kopfhaut, den Sch\'adel und das Gehirn repr\'asentieren. Um besser auf die Geometrie der drei modellierten Oberfl\'achen einzugehen, wurden sog. BE-Modelle (von engl.: Boundary Element) entwickelt, die sich f\'ur isotrop leitf\'ahige Schichten eignen. Um sowohl auf realistische Geometrien als auch auf Anisotropien und Inhomogenit\'aten eingehen zu k\'onnen, wurden Finite-Elemente (FE) Modelle des Kopfes ent\-wi\-ckelt. Zwei wichtige Fragen stellen sich nun: Ist eine exakte Modellierung der vorgestellten Gewebeleitf\'ahigkeits-Anisotropien n\'otig und in welchen F\'allen reichen weniger berechnungsaufwendige Verfahren aus? Wie k\'onnen komplexe FE-Vorw\'artsmodelle hinreichend beschleunigt werden, um den Zeitrestriktionen f\'ur inverse Quellrekonstruktionen in den Anwendungen zu gen\'ugen? Es existieren zahlreiche Arbeiten, die, basierend auf FE-Modellen des Kopfes, gezeigt haben, dass \'Offnungen im Sch\'adel wie z.B. diejenige, durch die der optische Nerv eintritt oder das okzipitale Loch des Hirnstamms, oder Inhomogenit\'aten wie L\'asionen im Gehirn oder die Sutura des Sch\'adels (insbesondere bei Kleinkindern, wo die Sutura noch nicht geschlossen sind) einen nicht vernachl\'assigbaren Einfluss auf das EEG/MEG-Vorw\'arts\-problem haben. Eine erste Studie bzgl. der Sensitivit\'at zweier ausgew\'ahlter EEG-Rekonstruktionsverfahren wies teils gro{\ss}e Fehler im Falle der Nichtbeachtung von Sch\'adel-Anisotropie nach. Insbesondere f\'ur diverse klinische Anwendungen wird der sog. {\em single dipole fit} im kontinuierlichen Parameterraum verwendet. Aufgrund des hohen Berechnungsaufwands wurden solche Verfahren bisher noch nicht auf ihre Sensitivit\'at auf Sch\'adel\-anisotropie getestet. Obwohl bereits eine Studie einen nicht-vernachl\'assigbaren Einfluss auf die EEG/MEG-Vorw\'artssimulation zeigte, gibt es noch keinerlei Ergebnis zur Aus\-wir\-kung der WM-Anisotropie auf inverse Rekonstruktionsverfahren. Die L\'osung des inversen Problems ist im allgemeinen nicht eindeutig. Viele Dipol-Quell\-konfi\-gura\-tionen k\'onnen ein und dieselbe EEG und MEG Feldverteilung erzeugen. Zus\'atz\-liche Annahmen \'uber die Quellen sind dementsprechend unerl\'asslich. Bei den sog. {\em fokalen Rekonstruktionsmethoden} wird die Annahme gemacht, dass einige wenige Dipole den gemessenen Daten zugrunde liegen. Diese Dipole (Anzahl, Ort, Richtung, St\'arke) sollen innerhalb des anatomisch und physiologisch sinnvollen Suchgebiets so ermittelt werden, dass die Messwerte m\'oglichst genau erkl\'art werden, gleichzeitig aber das Rauschen keinen zu starken Einfluss auf die L\'osung nimmt und die Algorithmen stabil in Bezug auf eine \'Ubersch\'atzung der Anzahl aktiver Quellen bleiben. Bei diesen, wie auch bei den sog. {\em Stromdichterekonstruktionsverfahren}, wird sich das Konzept der Regularisierung als eine wichtige Methode herausstellen. Wissenschaftliche Ergebnisse der Dissertation: Die Ergebnisse der vorgelegten Dissertation k\'onnen in vier Teilbereiche aufgeteilt werden. Im ersten Teilbereich wurden Methoden zur Registrierung und Segmentierung multimodaler MR-Bilder vorgestellt mit dem Ziel, ein {\bf realistisches anisotropes Multigewebe Kopfmodell} zu generieren. In der Literatur wurde von gr\'o{\ss}eren EEG- und MEG-Quell\-rekonstruktions\-fehlern aufgrund mangelhafter Modellierung insbesondere der inneren Sch\'a\-del\-kante berichtet. Ein erster Fokus dieser Arbeit lag dementsprechend auf einer verbesserten Segmentierung dieser Kante, die \'uber ein auf dem T1-gewichteten MRT (T1-MRT) registrierten Protonendichte-ge\-wich\-teten MRT (PD-MRT) gewonnen wurde. Die innere Sch\'a\-del\-kante zeichnet sich im PD-MRT im Gegensatz zum T1-MRT durch einen hohen Kontrast zwischen CSF (protonenreich) und Knochen (protonenarm) aus. Das T1-MRT wurde hingegen f\'ur die Segmentierung der Kopfhaut, der GM und der WM verwendet. Die Standardtechnik im Bereich der EEG/MEG-Quellrekonstruktion nutzt lediglich ein T1-MRT und gewinnt die gesuchte innere Sch\'adelkante \'uber ein Gl\'atten und Aufblasen der segmentierten Hirnoberfl\'ache. Im Vergleich beider Methoden konnte eine Verbesserung der Segmentierung von bis zu 8,5mm in Gebieten erzielt werden, in denen die Standardmethode die Dicke der CSF-Schicht untersch\'atzte. \'Uber die vorgestellten Methoden, insbesondere der Segmentierung unter Ber\'ucksichtigung der MR-Inhomogenit\'aten, konnte zudem eine sehr exakte Modellierung der GM erzielt werden, welche dann als anatomische und auch physiologische Nebenbedingung in die Quellrekonstruktion eingebettet werden kann. Zur realistischen Modellierung der An\-iso\-tropie der Sch\'adelschicht wurde ein deformierbares Modell eingesetzt, welches eine gegl\'attete Spongiosaoberfl\'ache darstellt und somit ein Abgreifen der Leitf\'ahigkeitstensor-Eigenvektoren in radialer Knochenrichtung erm\'oglicht. Die Eigenvektoren der WM-Tensoren wurden \'uber Ganzkopf-DT-MRT gemessen. Sch\'adel- und WM-Tensor-Eigen\-werte wurden entweder unter Ausnutzung publizierter Werte simuliert oder gem\'a{\ss} einem differentialen EMA (von engl.: Effective Medium Approach) ermittelt. Der zweite Teilbereich betraf die {\bf schnelle hochaufgel\'oste FE-Modellierung} des EEG/ MEG-Vorw\'artsproblems. Zun\'achst wurde ein \'Uberblick \'uber die Theorie gegeben und die praktische Realisierung der sp\'ater eingesetzten hochaufgel\'osten anisotropen FE-Volumen\-leiter\-modelle vorgestellt. In numerischen Genauigkeitsstudien konnte nachgewiesen werden, dass Hexaeder-FE-Netze, welche ein Verschieben der St\'utzpunkte zur Gl\'attung an Gewebekanten nutzen, vorteilhaft sind zu herk\'ommlichen Hexaeder-Netzen. Dazu wurden die Reihenentwicklungsformeln f\'ur das Mehrschalenkugel-Modell eingesetzt. Ein wei\-terer Fokus dieser Arbeit lag auf dem Einsatz schneller FE-L\'osungsmethoden, welche die praktische Anwendbarkeit von hochaufgel\'osten anisotropen FE-Kopfmodellen in den verschiedenen Anwendungsgebieten erm\'oglichen sollte. In einem Zeitvergleich zwischen dem neu in die Software integrierten parallelen (12 Prozessoren) algebraischen Mehrgitter- und dem Standard-Einprozessor-Jacobi-Vor\-kon\-di\-tio\-nierer f\'ur das Verfahren der konjugierten Gradienten konnte f\'ur hochaufgel\'oste anisotrope FE-Kopfmodelle ein Beschleunigungsfaktor von mehr als 100 erzielt werden. Im dritten Teilbereich, den {\bf Methoden zum inversen Problem}, wurden neben einem \'Uber\-blick \'uber fokale Rekonstruktions\-verfahren und Stromdichte\-rekon\-struk\-tions\-verfahren algorithmische Neuentwicklungen pr\'asentiert. Es wurde zun\'achst die Methode des {\em single dipole fit} in die FE-Modellierung eingef\'uhrt. F\'ur multiple dipolare Quellen wurde ein {\em Si\-mu\-lated Annealing} Algorithmus in Kombination mit einer abgeschnittenen Singul\'arwertzerlegung im diskreten Parameterraum entwickelt. Im Vergleich zu Standardmethoden zeigte der Algorithmus in verschiedenen Si\-mu\-lations\-studien eine ver\-bes\-serte F\'ahigkeit der Unterscheidung zwischen realen und sog. {\em ghost} Quellen. Des Weiteren wurde eine k\'urzlich in der Literatur vorgestellte raum-zeitliche Regularisierungsme\-thode auf die Stromdichterekonstruktion und, als zweite Anwendung, auf die dynamische Impedanztomographie angewandt. Der raum-zeitliche Ansatz konnte dabei eine stabilisierende Wirkung auf die Rekonstruktionsergebnisse erzielen und zeigte im Hinblick auf seine Genauigkeit und den Speicher- und Rechenzeitbedarf Vorteile gegen\'uber einem sog. {\em Kal\-man-Gl\'atter}. Im letzten Teilbereich der Dissertation wurden Untersuchungen zur {\bf An\-iso\-tro\-pie-Sensi\-tivi\-t\'at} durchgef\'uhrt. Der erste Teil bezog sich dabei auf das Vorw\'arts\-problem, wo die Resultate im Einklang mit der verf\'ugbaren Literatur waren. Es kann festgehalten werden, dass Sch\'adelanisotropie einen nicht-vernachl\'assigbaren Einfluss auf die EEG-Simulation hatte, wohingegen das MEG unbeeinflusst blieb. Je mehr eine Quelle von WM umgeben war, desto gr\'o{\ss}er war der Einfluss der WM-Anisotropie auf sowohl EEG als auch MEG. F\'ur das MEG wirkte sich WM-Anisotropie insbesondere auf Quellen mit starken radialen Anteilen aus. Lokale Leitf\'ahigkeits\'anderungen im Bereich der Quelle sollten sowohl im Hinblick auf das EEG als auch auf das MEG modelliert werden. Im zweiten Teil wurden die Einfl\'usse auf die inverse Quellrekonstruktion untersucht. Mit 18mm maximalem Fehler des EEG basierten {\em single dipole fit} war die Lokalisation einer haupts\'achlich tangential orientierten oberfl\'achennahen Quelle besonders sensitiv gegen\'uber einer 1 zu 10 Sch\'adelanisotropie. Da die tangentialen Quellen im temporalen Bereich (Sch\'adel re\-la\-tiv d\'unn) zu tief und im parietalen und okzipitalen Bereich (Sch\'adel relativ dick) zu oberfl\'achennah lokalisiert wurden, scheint eine Approximation der Sch\'adelanisotropie in BE-Modellen \'uber eine Anpassung des skalaren Sch\'adelleitf\'ahigkeitswertes nicht m\'oglich zu sein. Obwohl bei Vernachl\'assigung der WM-Anisotropie der maximale EEG-Lokalisierungsfehler mit 6,2mm f\'ur eine tiefe Quelle wesentlich geringer ausfiel, kann aufgrund eines maximalen Orientierungsfehlers von 24^{\circ} und einer mehr als zweifach untersch\'atzten Quellst\'arke eine Missinterpretation des Ergebnisses nicht ausgeschlossen werden. F\'ur die Rekonstruktion der vier tangentialen oberfl\'achennahen Dipole, welche als Aktivit\'atszentren der sog. {\em Early Left Anterior Negativity} (ELAN) Komponente bei der Syntaxanalyse von Sprache betrachtet werden, stellte sich WM und Sch\'adel\-anisotropie als vernachl\'assigbar im Hinblick auf eine MEG-Rekonstruk\-tion heraus. Im Gegensatz dazu wurde das EEG-Rekonstruktionsergebnis f\'ur alle getesteten inversen Verfahren stark verf\'alscht. Anisotropie verschob das Aktivit\'ats\-zentrum von L1L_1 und L2L_2 Norm Stromdichterekonstruktionsverfahren entlang der Sylvischen Furche in anteriore Richtung

    Neurophysiological mechanisms of sensorimotor recovery from stroke

    Get PDF
    Ischemic stroke often results in the devastating loss of nervous tissue in the cerebral cortex, leading to profound motor deficits when motor territory is lost, and ultimately resulting in a substantial reduction in quality of life for the stroke survivor. The International Classification of Functioning, Disability and Health (ICF) was developed in 2002 by the World Health Organization (WHO) and provides a framework for clinically defining impairment after stroke. While the reduction of burdens due to neurological disease is stated as a mission objective of the National Institute of Neurological Disorders and Stroke (NINDS), recent clinical trials have been unsuccessful in translating preclinical research breakthroughs into actionable therapeutic treatment strategies with meaningful progress towards this goal. This means that research expanding another NINDS mission is now more important than ever: improving fundamental knowledge about the brain and nervous system in order to illuminate the way forward. Past work in the monkey model of ischemic stroke has suggested there may be a relationship between motor improvements after injury and the ability of the animal to reintegrate sensory and motor information during behavior. This relationship may be subserved by sprouting cortical axonal processes that originate in the spared premotor cortex after motor cortical injury in squirrel monkeys. The axons were observed to grow for relatively long distances (millimeters), significantly changing direction so that it appears that they specifically navigate around the injury site and reorient toward the spared sensory cortex. Critically, it remains unknown whether such processes ever form functional synapses, and if they do, whether such synapses perform meaningful calculations or other functions during behavior. The intent of this dissertation was to study this phenomenon in both intact rats and rats with a focal ischemia in primary motor cortex (M1) contralateral to the preferred forelimb during a pellet retrieval task. As this proved to be a challenging and resource-intensive endeavor, a primary objective of the dissertation became to provide the tools to facilitate such a project to begin with. This includes the creation of software, hardware, and novel training and behavioral paradigms for the rat model. At the same time, analysis of previous experimental data suggested that plasticity in the neural activity of the bilateral motor cortices of rats performing pellet retrievals after focal M1 ischemia may exhibit its most salient changes with respect to functional changes in behavior via mechanisms that were different than initially hypothesized. Specifically, a major finding of this dissertation is the finding that evidence of plasticity in the unit activity of bilateral motor cortical areas of the reaching rat is much stronger at the level of population features. These features exhibit changes in dynamics that suggest a shift in network fixed points, which may relate to the stability of filtering performed during behavior. It is therefore predicted that in order to define recovery by comparison to restitution, a specific type of fixed point dynamics must be present in the cortical population state. A final suggestion is that the stability or presence of these dynamics is related to the reintegration of sensory information to the cortex, which may relate to the positive impact of physical therapy during rehabilitation in the postacute window. Although many more rats will be needed to state any of these findings as a definitive fact, this line of inquiry appears to be productive for identifying targets related to sensorimotor integration which may enhance the efficacy of future therapeutic strategies

    Translation of Novel Imaging Techniques into Clinical Use for Patients with Epilepsy

    Get PDF
    Temporal lobe epilepsy is the most common focal epilepsy. Up to 40% of patients are refractory to medication. Anterior temporal lobe resection (ATLR) is an effective treatment but damage to the optic radiation can result in a visual field deficit (VFD) that precludes driving, a key goal of surgery. Diffusion tensor imaging tractography allows the in vivo delineation of white matter tracts such as the optic radiation. This thesis addresses the role of optic radiation tractography in planning and subsequently improving the safety of epilepsy surgery. I show how tractography assists risk stratification and surgical planning in patients with lesions near the optic radiation and assess the utility of different tractography methods for surgical planning. To derive the greatest benefit, tractography information should be available during surgery which requires correction for intraoperative brain shift and other sources of image distortion. I apply software developed at UCL in a clinical population underlying ATLR to show that postoperative imaging can predict the VFD and then use this software in real time during surgery in an intraoperative MRI suite. Updated anatomical scans can be acquired during surgery and tractography data accurately mapped on to these and displayed on the operating microscope display. I demonstrate that this image guidance allows the neurosurgeon to avoid significant VFD without affecting the seizure outcome. Diffusion imaging can also probe tissue microstructure. I explore how structural changes within the frontoparietal working memory network and temporal lobes are related to working memory impairment in TLE. I describe the structural changes that occur following ATLR showing both Wallerian degeneration and structural plasticity. Finally, I show how a novel diffusion model (NODDI) could aid the clinical assessment of patients with focal cortical dysplasia. The emphasis throughout this thesis is how diffusion imaging can be clinically useful and address clinically relevant outcomes

    Social and Affective Neuroscience of Everyday Human Interaction

    Get PDF
    This Open Access book presents the current state of the art knowledge on social and affective neuroscience based on empirical findings. This volume is divided into several sections first guiding the reader through important theoretical topics within affective neuroscience, social neuroscience and moral emotions, and clinical neuroscience. Each chapter addresses everyday social interactions and various aspects of social interactions from a different angle taking the reader on a diverse journey. The last section of the book is of methodological nature. Basic information is presented for the reader to learn about common methodologies used in neuroscience alongside advanced input to deepen the understanding and usability of these methods in social and affective neuroscience for more experienced readers
    corecore