26,607 research outputs found

    The importance of music : a national plan for music education

    Get PDF

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Stability maintenance at the grassroots: Chinaā€™s weiwen apparatus as a form of conflict resolution

    Get PDF
    This working paper explores the history and potential of ā€œstability maintenanceā€ (weiwen) as a form of conflict resolution in China. Its emphasis on conflict resolution is novel. Previous examinations of the weiwen apparatus have concentrated on its political function, namely to manage resistance within society and maintain the authority of the party-state. This avenue of investigation has proved fruitful as a means of characterising the political motivation and the higher-level strategies involved in stability maintenance. Nonetheless, there remain significant conceptual and empirical gaps relating to how stability maintenance offices and processes actually function, particularly out of larger cities and at local levels. The research described in this paper aims to consider the effectiveness of stability maintenance as a part of the ā€œmarketā€ for conflict resolution in local China, and to test the hypothesis that conflict resolution as facilitated by weiwen is the most pragmatic and effective means of actually resolving conflicts in the current Chinese political context, notwithstanding the closeness of the stability maintenance discourse to state authority and its relative distance from rule of law-based methods of dispute resolution..

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICAā€™s needs.Postprint (published version

    Designing Restaurant Digital Menus to Enhance User Experience

    Get PDF
    Menu is a primary marketing and communication tools in the restaurants industry. Business-to-consumer digital devices are widely used in both daily life and business, especially the hospitality industry. Menus have a history of 260 years and now more restaurants are revising menus and starting to use digital menus. Marketing research and reports from Nation\u27s Restaurant and New York Times show that digital menu helps restaurants to increase profit by making food more accessible, selling more and requiring less labor in comparison to the traditional printed paper menu. The design principles and user interface are different in print menu and digital menus and we need design guidelines for new generation of digital menus. Digital menus also offer great opportunities of customization and personalization for using interaction to enhance user experience.There is little research that has been done in the graphic design and human computer interaction field for digital menu design. It seems that digital menus create a more effective and flexible way of reading and ordering while at the same time people have different experiences and expectations for using digital menus with interaction, not to mention personalization and customization will create better user experience. Currently no specific research shows how typography, orientation, layout and columns work for digital menus; what the efficient ways of arranging all the elements in digital menus are, and how images, graphic elements and descriptions would help to communicate with viewers

    Knowledge extraction from unstructured data and classification through distributed ontologies

    Get PDF
    The World Wide Web has changed the way humans use and share any kind of information. The Web removed several access barriers to the information published and has became an enormous space where users can easily navigate through heterogeneous resources (such as linked documents) and can easily edit, modify, or produce them. Documents implicitly enclose information and relationships among them which become only accessible to human beings. Indeed, the Web of documents evolved towards a space of data silos, linked each other only through untyped references (such as hypertext references) where only humans were able to understand. A growing desire to programmatically access to pieces of data implicitly enclosed in documents has characterized the last efforts of the Web research community. Direct access means structured data, thus enabling computing machinery to easily exploit the linking of different data sources. It has became crucial for the Web community to provide a technology stack for easing data integration at large scale, first structuring the data using standard ontologies and afterwards linking them to external data. Ontologies became the best practices to define axioms and relationships among classes and the Resource Description Framework (RDF) became the basic data model chosen to represent the ontology instances (i.e. an instance is a value of an axiom, class or attribute). Data becomes the new oil, in particular, extracting information from semi-structured textual documents on the Web is key to realize the Linked Data vision. In the literature these problems have been addressed with several proposals and standards, that mainly focus on technologies to access the data and on formats to represent the semantics of the data and their relationships. With the increasing of the volume of interconnected and serialized RDF data, RDF repositories may suffer from data overloading and may become a single point of failure for the overall Linked Data vision. One of the goals of this dissertation is to propose a thorough approach to manage the large scale RDF repositories, and to distribute them in a redundant and reliable peer-to-peer RDF architecture. The architecture consists of a logic to distribute and mine the knowledge and of a set of physical peer nodes organized in a ring topology based on a Distributed Hash Table (DHT). Each node shares the same logic and provides an entry point that enables clients to query the knowledge base using atomic, disjunctive and conjunctive SPARQL queries. The consistency of the results is increased using data redundancy algorithm that replicates each RDF triple in multiple nodes so that, in the case of peer failure, other peers can retrieve the data needed to resolve the queries. Additionally, a distributed load balancing algorithm is used to maintain a uniform distribution of the data among the participating peers by dynamically changing the key space assigned to each node in the DHT. Recently, the process of data structuring has gained more and more attention when applied to the large volume of text information spread on the Web, such as legacy data, news papers, scientific papers or (micro-)blog posts. This process mainly consists in three steps: \emph{i)} the extraction from the text of atomic pieces of information, called named entities; \emph{ii)} the classification of these pieces of information through ontologies; \emph{iii)} the disambigation of them through Uniform Resource Identifiers (URIs) identifying real world objects. As a step towards interconnecting the web to real world objects via named entities, different techniques have been proposed. The second objective of this work is to propose a comparison of these approaches in order to highlight strengths and weaknesses in different scenarios such as scientific and news papers, or user generated contents. We created the Named Entity Recognition and Disambiguation (NERD) web framework, publicly accessible on the Web (through REST API and web User Interface), which unifies several named entity extraction technologies. Moreover, we proposed the NERD ontology, a reference ontology for comparing the results of these technologies. Recently, the NERD ontology has been included in the NIF (Natural language processing Interchange Format) specification, part of the Creating Knowledge out of Interlinked Data (LOD2) project. Summarizing, this dissertation defines a framework for the extraction of knowledge from unstructured data and its classification via distributed ontologies. A detailed study of the Semantic Web and knowledge extraction fields is proposed to define the issues taken under investigation in this work. Then, it proposes an architecture to tackle the single point of failure issue introduced by the RDF repositories spread within the Web. Although the use of ontologies enables a Web where data is structured and comprehensible by computing machinery, human users may take advantage of it especially for the annotation task. Hence, this work describes an annotation tool for web editing, audio and video annotation in a web front end User Interface powered on the top of a distributed ontology. Furthermore, this dissertation details a thorough comparison of the state of the art of named entity technologies. The NERD framework is presented as technology to encompass existing solutions in the named entity extraction field and the NERD ontology is presented as reference ontology in the field. Finally, this work highlights three use cases with the purpose to reduce the amount of data silos spread within the Web: a Linked Data approach to augment the automatic classification task in a Systematic Literature Review, an application to lift educational data stored in Sharable Content Object Reference Model (SCORM) data silos to the Web of data and a scientific conference venue enhancer plug on the top of several data live collectors. Significant research efforts have been devoted to combine the efficiency of a reliable data structure and the importance of data extraction techniques. This dissertation opens different research doors which mainly join two different research communities: the Semantic Web and the Natural Language Processing community. The Web provides a considerable amount of data where NLP techniques may shed the light within it. The use of the URI as a unique identifier may provide one milestone for the materialization of entities lifted from a raw text to real world object
    • ā€¦
    corecore