17,433 research outputs found

    Local stability of Belief Propagation algorithm with multiple fixed points

    Get PDF
    A number of problems in statistical physics and computer science can be expressed as the computation of marginal probabilities over a Markov random field. Belief propagation, an iterative message-passing algorithm, computes exactly such marginals when the underlying graph is a tree. But it has gained its popularity as an efficient way to approximate them in the more general case, even if it can exhibits multiple fixed points and is not guaranteed to converge. In this paper, we express a new sufficient condition for local stability of a belief propagation fixed point in terms of the graph structure and the beliefs values at the fixed point. This gives credence to the usual understanding that Belief Propagation performs better on sparse graphs.Comment: arXiv admin note: substantial text overlap with arXiv:1101.417

    The Role of Normalization in the Belief Propagation Algorithm

    Get PDF
    An important part of problems in statistical physics and computer science can be expressed as the computation of marginal probabilities over a Markov Random Field. The belief propagation algorithm, which is an exact procedure to compute these marginals when the underlying graph is a tree, has gained its popularity as an efficient way to approximate them in the more general case. In this paper, we focus on an aspect of the algorithm that did not get that much attention in the literature, which is the effect of the normalization of the messages. We show in particular that, for a large class of normalization strategies, it is possible to focus only on belief convergence. Following this, we express the necessary and sufficient conditions for local stability of a fixed point in terms of the graph structure and the beliefs values at the fixed point. We also explicit some connexion between the normalization constants and the underlying Bethe Free Energy

    An FPTAS for Bargaining Networks with Unequal Bargaining Powers

    Full text link
    Bargaining networks model social or economic situations in which agents seek to form the most lucrative partnership with another agent from among several alternatives. There has been a flurry of recent research studying Nash bargaining solutions (also called 'balanced outcomes') in bargaining networks, so that we now know when such solutions exist, and also that they can be computed efficiently, even by market agents behaving in a natural manner. In this work we study a generalization of Nash bargaining, that models the possibility of unequal 'bargaining powers'. This generalization was introduced in [KB+10], where it was shown that the corresponding 'unequal division' (UD) solutions exist if and only if Nash bargaining solutions exist, and also that a certain local dynamics converges to UD solutions when they exist. However, the bound on convergence time obtained for that dynamics was exponential in network size for the unequal division case. This bound is tight, in the sense that there exists instances on which the dynamics of [KB+10] converges only after exponential time. Other approaches, such as the one of Kleinberg and Tardos, do not generalize to the unsymmetrical case. Thus, the question of computational tractability of UD solutions has remained open. In this paper, we provide an FPTAS for the computation of UD solutions, when such solutions exist. On a graph G=(V,E) with weights (i.e. pairwise profit opportunities) uniformly bounded above by 1, our FPTAS finds an \eps-UD solution in time poly(|V|,1/\eps). We also provide a fast local algorithm for finding \eps-UD solution, providing further justification that a market can find such a solution.Comment: 18 pages; Amin Saberi (Ed.): Internet and Network Economics - 6th International Workshop, WINE 2010, Stanford, CA, USA, December 13-17, 2010. Proceedings
    corecore