4,256 research outputs found

    Incremental construction of LSTM recurrent neural network

    Get PDF
    Long Short--Term Memory (LSTM) is a recurrent neural network that uses structures called memory blocks to allow the net remember significant events distant in the past input sequence in order to solve long time lag tasks, where other RNN approaches fail. Throughout this work we have performed experiments using LSTM networks extended with growing abilities, which we call GLSTM. Four methods of training growing LSTM has been compared. These methods include cascade and fully connected hidden layers as well as two different levels of freezing previous weights in the cascade case. GLSTM has been applied to a forecasting problem in a biomedical domain, where the input/output behavior of five controllers of the Central Nervous System control has to be modelled. We have compared growing LSTM results against other neural networks approaches, and our work applying conventional LSTM to the task at hand.Postprint (published version

    NAIS-Net: Stable Deep Networks from Non-Autonomous Differential Equations

    Get PDF
    This paper introduces Non-Autonomous Input-Output Stable Network (NAIS-Net), a very deep architecture where each stacked processing block is derived from a time-invariant non-autonomous dynamical system. Non-autonomy is implemented by skip connections from the block input to each of the unrolled processing stages and allows stability to be enforced so that blocks can be unrolled adaptively to a pattern-dependent processing depth. NAIS-Net induces non-trivial, Lipschitz input-output maps, even for an infinite unroll length. We prove that the network is globally asymptotically stable so that for every initial condition there is exactly one input-dependent equilibrium assuming tanh units, and multiple stable equilibria for ReL units. An efficient implementation that enforces the stability under derived conditions for both fully-connected and convolutional layers is also presented. Experimental results show how NAIS-Net exhibits stability in practice, yielding a significant reduction in generalization gap compared to ResNets.Comment: NIPS 201

    On the Stability of Gated Graph Neural Networks

    Full text link
    In this paper, we aim to find the conditions for input-state stability (ISS) and incremental input-state stability (δ\deltaISS) of Gated Graph Neural Networks (GGNNs). We show that this recurrent version of Graph Neural Networks (GNNs) can be expressed as a dynamical distributed system and, as a consequence, can be analysed using model-based techniques to assess its stability and robustness properties. Then, the stability criteria found can be exploited as constraints during the training process to enforce the internal stability of the neural network. Two distributed control examples, flocking and multi-robot motion control, show that using these conditions increases the performance and robustness of the gated GNNs
    • …
    corecore