7 research outputs found

    Cornerstones of Sampling of Operator Theory

    Full text link
    This paper reviews some results on the identifiability of classes of operators whose Kohn-Nirenberg symbols are band-limited (called band-limited operators), which we refer to as sampling of operators. We trace the motivation and history of the subject back to the original work of the third-named author in the late 1950s and early 1960s, and to the innovations in spread-spectrum communications that preceded that work. We give a brief overview of the NOMAC (Noise Modulation and Correlation) and Rake receivers, which were early implementations of spread-spectrum multi-path wireless communication systems. We examine in detail the original proof of the third-named author characterizing identifiability of channels in terms of the maximum time and Doppler spread of the channel, and do the same for the subsequent generalization of that work by Bello. The mathematical limitations inherent in the proofs of Bello and the third author are removed by using mathematical tools unavailable at the time. We survey more recent advances in sampling of operators and discuss the implications of the use of periodically-weighted delta-trains as identifiers for operator classes that satisfy Bello's criterion for identifiability, leading to new insights into the theory of finite-dimensional Gabor systems. We present novel results on operator sampling in higher dimensions, and review implications and generalizations of the results to stochastic operators, MIMO systems, and operators with unknown spreading domains

    Local Sampling and Approximation of Operators with Bandlimited Kohn--Nirenberg Symbols

    No full text
    Recent sampling theorems allow for the recovery of operators with bandlimited Kohn--Nirenberg symbols from their response to a single discretely supported identifier signal. The available results are inherently nonlocal. For example, we show that in order to recover a bandlimited operator precisely, the identifier cannot decay in time or in frequency. Moreover, a concept of local and discrete representation is missing from the theory. In this paper, we develop tools that address these shortcomings. We show that to obtain a local approximation of an operator, it is sufficient to test the operator on a truncated and mollified delta train, that is, on a compactly supported Schwarz class function. To compute the operator numerically, discrete measurements can be obtained from the response function which is localized in the sense that a local selection of the values yields a local approximation of the operator. Central to our analysis is the conceptualization of the meaning of localization for operators with bandlimited Kohn--Nirenberg symbols
    corecore