121 research outputs found

    Metro Area Network Single Link Failure- Fast Spanning Tree Reconnection

    Get PDF
    Due to Affordability, ease of maintenance and ubiquity, Ethernet has become a preferred technology to be deployed in to LAN, MAN and WAN networks. Even though Ethernet has being used widely for switched communication it is not meet requirement for Metro Area Networks in terms of network resilience. In this paper, author propose the fast spanning tree re-connection formula, especially for Metro Area Ethernet networks to manage any single link failure, and it has most important feature of fast recovery, backup capacity grantees and ease of fast recovery. If in case of link failure on a spanning tree, a distributed failure recovery protocol is activated to rebuild the broken spanning tree. This is re-connecting the link but not a spanning tree. Author presents the details of the protocol, which including failure notification and forwarding table reconfiguration manual. The Integer linear programming (ILP) is formulated to reconnect-links as it pre-configured. The result of optimization gives the remark of lower implementation cost, fast and effective spanning tree reconnection mechanism can achieve better performance than other resilient technique for Metro Ethernet Network

    Modeling and Algorithm for Multiple Spanning Tree Provisioning in Resilient and Load Balanced Ethernet Networks

    Get PDF
    We propose a multitree based fast failover scheme for Ethernet networks. In our system, only few spanning trees are used to carry working traffic in the normal state. As a failure happens, the nodes adjacent to the failure redirect traffic to the preplanned backup VLAN trees to realize fast failure recovery. In the proposed scheme, a new leaf constraint is enforced on the backup trees. It enables the network being able to provide 100% survivability against any single link and any single node failure. Besides fast failover, we also take load balancing into consideration. We model an Ethernet network as a twolayered graph and propose an Integer Linear Programming (ILP) formulation for the problem. We further propose a heuristic algorithm to provide solutions to large networks. The simulation results show that the proposed scheme can achieve high survivability while maintaining load balancing at the same time. In addition, we have implemented the proposed scheme in an FPGA system. The experimental results show that it takes only few μsec to recover a network failure. This is far beyond the 50 msec requirement used in telecommunication networks for network protection

    Optimal Design Strategies for Survivable Carrier Ethernet Networks

    Get PDF
    Ethernet technologies have evolved through enormous standardization efforts over the past two decades to achieve carrier-grade functionalities, leading to carrier Ethernet. Carrier Ethernet is expected to dominate next generation backbone networks due to its low-cost and simplicity. Ethernet's ability to provide carrier-grade Layer-2 protection switching with SONET/SDH-like fast restoration time is achieved by a new protection switching protocol, Ethernet Ring Protection (ERP). In this thesis, we address two important design aspects of carrier Ethernet networks, namely, survivable design of ERP-based Ethernet transport networks together with energy efficient network design. For the former, we address the problem of optimal resource allocation while designing logical ERP for deployment and model the combinatorially complex problem of joint Ring Protection Link (RPL) placements and ring hierarchies selection as an optimization problem. We develop several Mixed Integer Linear Programming (MILP) model to solve the problem optimally considering both single link failure and concurrent dual link failure scenarios. We also present a traffic engineering based ERP design approach and develop corresponding MILP design models for configuring either single or multiple logical ERP instances over one underlying physical ring. For the latter, we propose two novel architectures of energy efficient Ethernet switches using passive optical correlators for optical bypassing as well as using energy efficient Ethernet (EEE) ports for traffic aggregation and forwarding. We develop an optimal frame scheduling model for EEE ports to ensure minimal energy consumption by using packet coalescing and efficient scheduling

    Feasibility of wireless mesh for LTE-Advanced small cell access backhaul

    Get PDF
    Mobiilidatan määrä on muutaman viime vuoden aikana kasvanut voimakkaasti ja nykyiset ennustukset arvioivat eksponentiaalista kasvukäyrää tulevien vuosien aikana. Matkapuhelinjärjestelmät ovat kehittyneet nopeasti tämän trendin ohjaamana. Neljännen sukupolven matkapuhelinverkkostandardien myötä, uudet innovaatiot kuten heterogeeniset verkkoratkaisut tarjoavat ratkaisun nykyisiin skaalautuvuus- ja kapasiteettiongelmiin. Joitain ilmeisiä ongelmakohtiakin kuitenkin esiintyy kuten heterogeenisten verkkojen runkokytkennän toteuttaminen. Yksi lupaavimmista tavoista toteuttaa heterogeenisten verkkojen runkokytkentä on langaton ja itseorganisoituva mesh-verkko. Tämän opinnäytetyön tavoitteena on varmistaa ja testata Nokia Siemens Networksin kehittämän mesh-runkokytkentäverkkokonseptin toteutettavuutta ja toiminnallisuutta soveltuvan validointijärjestelmän avulla. Kaiken kaikkiaan validointijärjestelmä ja sen päälle toteutettu mesh-protokolla toimivat moitteettomasti koko kehitys- ja testausprosessin ajan. Konseptin eri ominaisuudet ja mekanismit todistettiin täysin toteutettaviksi ja toimiviksi. Muutamalla lisäominaisuudella ja konseptiparannuksella mesh-konsepti tarjoaa houkuttelevan ja innovatiivisen ratkaisun heterogeenisten verkkojen runkokytkentään tulevaisuudessa.Mobile traffic demands and volumes are increasing and will dramatically keep increasing in the future. Along with this, mobile networks have evolved to better match this growth. Fourth generation cellular network standard introduced a set of new innovations for mobile communications, including support for heterogeneous network deployments. Heterogeneous networking is the likely answer for future mobile data capacity shortage but also poses some challenges, the most evident being how to implement the backhauling. One of the most promising heterogeneous network backhaul solutions is a meshed radio system with self-organizing features. The main scope of this master's thesis is the verification of functionality and feasibility of a wireless mesh backhaul concept developed by Nokia Siemens Networks through a proof-of-concept system. All in all, the wireless mesh proof-of-concept system performed strongly throughout the development and testing process. The different functionalities were proven to work successfully together. With further development and enhancement, the system concept displays extreme potential for a state-of-the-art heterogeneous network backhaul technology

    Management of Carrier Grade Intra-Domain Ethernet

    Get PDF
    Internet ei ole enää pelkkä tiedonlähde, vaan enenevässä määrin kriittisempi osa yhteiskunnan infrastruktuuria. Nykyiset Internet-palveluja tuottavat teknologiat - IPv4 osoitteistuksessa, MPLS siirtoalustana ja SDH fyysisenä välitysteknologiana - ovat alkaneet menettää valta-asemaansa samalla kun kaikille tuttu verkkoteknologia, Ethernet, on laajentunut lähiverkoista runkoverkkoihin. Maailmassa on miljoonia Ethernet-lähiverkkoja. Olisi kustannustehokaampaa toteuttaa myös näiden lähiverkkojen väliset siirtoyhteydet Ethernetillä. Halu kustannustehokkuuteen ja teknologian konsolidointiin on tuonut esille tarpeen ns. operaattorikestoisille Ethernet-palveluille. Koska Ethernetistä puuttuu määrättyjä ominaisuuksia joita ilman on mahdotonta toteuttaa siirtoverkkopalveluja, näitä operaattori-Ethernet-palveluja on tuotettu toistaiseksi olemassa olevilla tekniikoilla, kuten MPLS:llä. Tulevaisuudessa todellinen haaste on luoda operaattoritasoinen, Ethernet-pohjainen siirtoverkkoteknologia, joka kykenee tuottamaan Ethernet-palvelujen lisäksi mitä tahansa muita tietoliikennepalveluja. Tämä diplomityö käsittelee operaattoritasoisen Ethernetin hallintaa yhden runkoverkkoalueen sisällä. Työssä käydään läpi standardoidut operaattorikestoiset Ethernet-palvelut, teknologiat joilla palveluja tällä hetkellä tuotetaan, ehdokkaat tulevaisuuden Ethernet-siirtoverkkoteknologioiksi sekä keskeisimmät verkonhallintaan liittyvät standardit. Työn jälkimmäisessä puoliskossa esitellään Euroopan Unionin 7th Framework ETNA -projektia varten kehitetty verkonhallintajärjestelmä. Hallintajärjestelmä tarjoaa rajapinnan jonka kautta on mahdollista provisioida suojattuja Ethernet-palveluja kahden asiakasliityntäpisteen välillä, ja lisäksi lähetyspuita joissa kohteina on useampi asiakaspiste. Hallintajärjestelmältä tilatut palvelut viestitetään Ben Gurionin yliopiston toteuttaman, verkkoprosessoreilla toimivan välityskerroksen välitystauluihin.Internet is evolving from its role as a mere information provider to an ubiquitous infrastructure crucial to society. The current technologies running the majority of global Internet - IPv4 in addressing, MPLS as core transport and SDH as the physical transfer technology - have been long-lived. However, their dominance has started to diminish because a network technology common to all, Ethernet, has started to expand from local to metropolitan and wide area networks. Most enterprises and home users already use Ethernet in their LAN. Connecting these sites to MAN or WAN with the same technology is the logical next step in technology consolidation. This has raised the demand for Carrier Ethernet services. However, internally they are still mostly provided with non-Ethernet technologies such as MPLS or SDH, because currently Ethernet lacks the necessary service assurance components. The real challenge in future internetworking is creating a Carrier Ethernet Transport (CET). With CET, any imaginable telecommunication service is delivered with a purely Ethernet based technology. When we have Ethernet in transport networks, it is no more a long stretch to a global, routed end-to-end Ethernet. This thesis covers management of an intra-domain CET control plane. First, Carrier Ethernet services and technologies currently producing these services are analyzed. Second, requirements imposed to CET and current CET candidates are discussed. Third, network management standards and their alignment to carrier business is studied. After the background has been discussed, a control plane management system developed for the EU 7th framework ETNA project is introduced. The management system is capable of provisioning point-to-point and multipoint services and is controlled via a web-service -based northbound interface. The control plane is able to install the services as forwarding entries in a network processor -driven data plane developed at Ben Gurion University

    Differentiated quality-of-recovery and quality-of-protection in survivable WDM mesh networks

    Get PDF
    In the modern telecommunication business, there is a need to provide different Quality-of-Recovery (QoR) and Quality-of-Protection (QoP) classes in order to accommodate as many customers as possible, and to optimize the protection capacity cost. Prevalent protection methods to provide specific QoS related to protection are based on pre-defined shape protection structures (topologies), e.g., p -cycles and p -trees. Although some of these protection patterns are known to provide a good trade-off among the different protection parameters, their shapes can limit their deployment in some specific network conditions, e.g., a constrained link spare capacity budget and traffic distribution. In this thesis, we propose to re-think the design process of protection schemes in survivable WDM networks by adopting a hew design approach where the shapes of the protection structures are decided based on the targeted QoR and QoP guarantees, and not the reverse. We focus on the degree of pre-configuration of the protection topologies, and use fully and partially pre-cross connected p -structures, and dynamically cross connected p -structures. In QoR differentiation, we develop different approaches for pre-configuring the protection capacity in order to strike different balances between the protection cost and the availability requirements in the network; while in the QoP differentiation, we focus on the shaping of the protection structures to provide different grades of protection including single and dual-link failure protection. The new research directions proposed and developed in this thesis are intended to help network operators to effectively support different Quality-of-Recovery and Quality-of-Protection classes. All new ideas have been translated into mathematical models for which we propose practical and efficient design methods in order to optimize the inherent cost to the different designs of protection schemes. Furthermore, we establish a quantitative relation between the degree of pre-configuration of the protection structures and their costs in terms of protection capacity. Our most significant contributions are the design and development of Pre-Configured Protection Structure (p-structure) and Pre-Configured Protection Extended-Tree (p -etree) based schemes. Thanks to the column generation modeling and solution approaches, we propose a new design approach of protection schemes where we deploy just enough protection to provide different quality of recovery and protection classe

    Optical flow switched networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 253-279).In the four decades since optical fiber was introduced as a communications medium, optical networking has revolutionized the telecommunications landscape. It has enabled the Internet as we know it today, and is central to the realization of Network-Centric Warfare in the defense world. Sustained exponential growth in communications bandwidth demand, however, is requiring that the nexus of innovation in optical networking continue, in order to ensure cost-effective communications in the future. In this thesis, we present Optical Flow Switching (OFS) as a key enabler of scalable future optical networks. The general idea behind OFS-agile, end-to-end, all-optical connections-is decades old, if not as old as the field of optical networking itself. However, owing to the absence of an application for it, OFS remained an underdeveloped idea-bereft of how it could be implemented, how well it would perform, and how much it would cost relative to other architectures. The contributions of this thesis are in providing partial answers to these three broad questions. With respect to implementation, we address the physical layer design of OFS in the metro-area and access, and develop sensible scheduling algorithms for OFS communication. Our performance study comprises a comparative capacity analysis for the wide-area, as well as an analytical approximation of the throughput-delay tradeoff offered by OFS for inter-MAN communication. Lastly, with regard to the economics of OFS, we employ an approximate capital expenditure model, which enables a throughput-cost comparison of OFS with other prominent candidate architectures. Our conclusions point to the fact that OFS offers significant advantage over other architectures in economic scalability.(cont.) In particular, for sufficiently heavy traffic, OFS handles large transactions at far lower cost than other optical network architectures. In light of the increasing importance of large transactions in both commercial and defense networks, we conclude that OFS may be crucial to the future viability of optical networking.by Guy E. Weichenberg.Ph.D
    corecore