173,990 research outputs found

    Hybrid Monitors for Concurrent Noninterference

    Get PDF
    Controlling confidential information in concurrent systems is difficult, due to covert channels resulting from interaction between threads. This problem is exacerbated if threads share resources at fine granularity. In this work, we propose a novel monitoring framework to enforce strong information security in concurrent programs. Our monitors are hybrid, combining dynamic and static program analysis to enforce security in a sound and rather precise fashion. In our framework, each thread is guarded by its own local monitor, and there is a single global monitor. We instantiate our monitoring framework to support rely-guarantee style reasoning about the use of shared resources, at the granularity of individual memory locations, and then specialize local monitors further to enforce flow-sensitive progress-sensitive information-flow control. Our local monitors exploit rely-guarantee-style reasoning about shared memory to achieve high precision. Soundness of rely-guarantee-style reasoning is guaranteed by all monitors cooperatively. The global monitor is invoked only when threads synchronize, and so does not needlessly restrict concurrency. We prove that our hybrid monitoring approach enforces a knowledge-based progress-sensitive non-interference security condition.Engineering and Applied Science

    Rely-Guarantee Based Reasoning for Message-Passing Programs

    Get PDF
    The difficulties of verifying concurrent programs lie in their inherent non-determinism and interferences. Rely-Guarantee reasoning is one useful approach to solve this problem for its capability in formally specifying inter- thread interferences. However, modern verification requires better locality and modularity. It is still a great challenge to verify a message-passing program in a modular and composable way. In this paper, we propose a new reasoning system for message-passing programs. It is a novel logic that supports Hoare style triples to specify and verify distributed programs modularly. We concretize the concept of event traces to represent interactions among distributed agents, and specify behav- iors of agents by their local traces with regard to environmental assumptions — an idea inspired by Rely-Guarantee reasoning. Based on trace semantics, the verification is compositional in both temporal and spatial dimensions. To show validity, we apply our logic to modularly prove several examples

    Rely-guarantee protocols for safe interference over shared memory

    Get PDF
    Mutable state can be useful in certain algorithms, to structure programs, or for efficiency purposes. However, when shared mutable state is used in non-local or nonobvious ways, the interactions that can occur via aliases to that shared memory can be a source of program errors. Undisciplined uses of shared state may unsafely interfere with local reasoning as other aliases may interleave their changes to the shared state in unexpected ways. We propose a novel technique, rely-guarantee protocols, that structures the interactions between aliases and ensures that only safe interference is possible. We present a linear type system outfitted with our novel sharing mechanism that enables controlled interference over shared mutable resources. Each alias is assigned separate, local roles encoded in a protocol abstraction that constrains how an alias can legally use that shared state. By following the spirit of rely-guarantee reasoning, our rely-guarantee protocols ensure that only safe interference can occur but still allow many interesting uses of shared state, such as going beyond invariant and monotonic usages. This thesis describes the three core mechanisms that enable our type-based technique to work: 1) we show how a protocol models an alias’s perspective on how the shared state evolves and constrains that alias’s interactions with the shared state; 2) we show how protocols can be used while enforcing the agreed interference contract; and finally, 3) we show how to check that all local protocols to some shared state can be safely composed to ensure globally safe interference over that shared memory. The interference caused by shared state is rooted at how the uses of di↵erent aliases to that state may be interleaved (perhaps even in non-deterministic ways) at run-time. Therefore, our technique is mostly agnostic as to whether this interference was the result of alias interleaving caused by sequential or concurrent semantics. We show implementations of our technique in both settings, and highlight their di↵erences. Because sharing is “first-class” (and not tied to a module), we show a polymorphic procedure that enables abstract compositions of protocols. Thus, protocols can be specialized or extended without requiring specific knowledge of the interference produce by other protocols to that state. We show that protocol composition can ensure safety even when considering abstracted protocols. We show that this core composition mechanism is sound, decidable (without the need for manual intervention), and provide an algorithm implementation

    Steps in modular specifications for concurrent modules

    Get PDF
    © 2015 Published by Elsevier B.V.The specification of a concurrent program module is a difficult problem. The specifications must be strong enough to enable reasoning about the intended clients without reference to the underlying module implementation. We survey a range of verification techniques for specifying concurrent modules, in particular highlighting four key concepts: auxiliary state, interference abstraction, resource ownership and atomicity. We show how these concepts combine to provide powerful approaches to specifying concurrent modules

    Trace models of concurrent valuation algebras

    Full text link
    This paper introduces Concurrent Valuation Algebras (CVAs), extending ordered valuation algebras (OVAs) by incorporating two combine operators representing parallel and sequential products that adhere to a weak exchange law. CVAs present significant theoretical and practical advantages for specifying and modelling concurrent and distributed systems. As a presheaf on a space of domains, a CVA facilitates localised specifications, promoting modularity, compositionality, and the capability to represent large and complex systems. Moreover, CVAs facilitate lattice-based refinement reasoning, and are compatible with standard methodologies such as Hoare and Rely-Guarantee logics. We demonstrate the flexibility of CVAs through three trace models that represent distinct paradigms of concurrent/distributed computing, and interrelate them via morphisms. We also discuss the potential for importing a powerful local computation framework from valuation algebras for the model checking of concurrent and distributed systems.Comment: 25 page

    Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools

    Full text link
    We provide simple equational principles for deriving rely-guarantee-style inference rules and refinement laws based on idempotent semirings. We link the algebraic layer with concrete models of programs based on languages and execution traces. We have implemented the approach in Isabelle/HOL as a lightweight concurrency verification tool that supports reasoning about the control and data flow of concurrent programs with shared variables at different levels of abstraction. This is illustrated on two simple verification examples
    • …
    corecore