271 research outputs found

    Utilização da Norma JPEG2000 para codificar proteger e comercializar Produtos de Observação Terrestre

    Get PDF
    Applications like, change detection, global monitoring, disaster detection and management have emerging requirements that need the availability of large amounts of data. This data is currently being capture by a multiplicity of instruments and EO (Earth Observation) sensors originating large volumes of data that needs to be stored, processed and accessed in order to be useful – as an example, ENVISAT accumulates, in a yearly basis, several hundred terabytes of data. This need to recover, store, process and access brings some interesting challenges, like storage space, processing power, bandwidth and security, just to mention a few. These challenges are still very important on today’s technological world. If we take a look for example at the number of subscribers of ISP (Internet Service Providers) broadband services on the developed world today, one can notice that broadband services are still far from being common and dominant. On the underdeveloped countries the picture is even dimmer, not only from a bandwidth point of view but also in all other aspects regarding information and communication technologies (ICTs). All this challenges need to be taken into account if a service is to reach the broadest audience possible. Obviously protection and securing of services and contents is an extra asset that helps on the preservation of possible business values, especially if we consider such a costly business as the space industry. This thesis presents and describes a system which allows, not only the encoding and decoding of several EO products into a JPEG2000 format, but also supports some of the security requirements identified previously that allows ESA (European Space Agency) and related EO services to define and apply efficient EO data access security policies and even to exploit new ways to commerce EO products over the Internet.Aplicações como, detecção de mudanças no terreno, monitorização planetária, detecção e gestão de desastres, têm necessidades prementes que necessitam de vastas quantidades de dados. Estes dados estão presentemente a ser capturados por uma multiplicidade de instrumentos e sensores de observação terrestre, que originam uma enormidade de dados que necessitam de ser armazenados processados e acedidos de forma a se tornarem úteis – por exemplo, a ENVISAT acumula anualmente varias centenas de terabytes de dados. Esta necessidade de recuperar, armazenar, processar e aceder introduz alguns desafios interessantes como o espaço de armazenamento, poder de processamento, largura de banda e segurança dos dados só para mencionar alguns. Estes desafios são muito importantes no mundo tecnológico de hoje. Se olharmos, por exemplo, ao número actual de subscritores de ISP (Internet Service Providers) de banda larga nos países desenvolvidos podemos ficar surpreendidos com o facto do número de subscritores desses serviços ainda não ser uma maioria da população ou dos agregados familiares. Nos países subdesenvolvidos o quadro é ainda mais negro não só do ponto de vista da largura de banda mas também de todos os outros aspectos relacionados com Tecnologias da Informação e Comunicação (TICs). Todos estes aspectos devem ser levados em consideração se se pretende que um serviço se torne o mais abrangente possível em termos de audiências. Obviamente a protecção e segurança dos conteúdos é um factor extra que ajuda a preservar possíveis valores de negócio, especialmente considerando industrias tão onerosas como a Industria Espacial. Esta tese apresenta e descreve um sistema que permite, não só a codificação e descodificação de diversos produtos de observação terrestre para formato JPEG2000 mas também o suporte de alguns requisitos de segurança identificados previamente que permitem, á Agência Espacial Europeia e a outros serviços relacionados com observação terrestre, a aplicação de politicas eficientes de acesso seguro a produtos de observação terrestre, permitindo até o aparecimento de novas forma de comercialização de produtos de observação terrestre através da Internet

    Standard and specific compression techniques for DNA microarray images

    Get PDF
    We review the state of the art in DNA microarray image compression and provide original comparisons between standard and microarray-specific compression techniques that validate and expand previous work. First, we describe the most relevant approaches published in the literature and classify them according to the stage of the typical image compression process where each approach makes its contribution, and then we summarize the compression results reported for these microarray-specific image compression schemes. In a set of experiments conducted for this paper, we obtain new results for several popular image coding techniques that include the most recent coding standards. Prediction-based schemes CALIC and JPEG-LS are the best-performing standard compressors, but are improved upon by the best microarray-specific technique, Battiato's CNN-based scheme

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud móvil) aboga por la integración masiva de las más avanzadas tecnologías de comunicación, red móvil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atención clínica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gestión de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestación de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes crónicos y una notable disminución del gasto de los Sistemas de Salud gracias a la reducción del número y la duración de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompañadas del requisito de un alto grado de disponibilidad de la información biomédica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias señales de un usuario para obtener un diagnóstico más preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sitúa a la seguridad (y a la privacidad) del modelo de m-Salud como factor crítico para su éxito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atención que otros requisitos técnicos que eran más urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementación de políticas de seguridad sólidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la económica (p.ej. sobrecostes por la inclusión de hardware extra para la autenticación de usuarios), en el rendimiento (p.ej. reducción de la eficiencia y de la interoperabilidad debido a la integración de elementos de seguridad) y en la usabilidad (p.ej. configuración más complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal médico, personal técnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las características de las distintas aplicaciones de m-Salud. Este esquema está compuesto por tres capas diferenciadas, diseñadas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensión de seguridad de aquellos protocolos estándar que permiten la adquisición, el intercambio y/o la administración de información biomédica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no reúnen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los estándares biomédicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biomédicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de carácter clínico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sitúa en paralelo a los anteriores, selecciona herramientas genéricas de seguridad (elementos de autenticación y criptográficos) cuya integración en los otros bloques resulta idónea, y desarrolla nuevas herramientas de seguridad, basadas en señal -- embedding y keytagging --, para reforzar la protección de los test biomédicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications

    Robust Transmission of Images Based on JPEG2000 Using Edge Information

    Get PDF
    In multimedia communication and data storage, compression of data is essential to speed up the transmission rate, minimize the use of channel bandwidth, and minimize storage space. JPEG2000 is the new standard for image compression for transmission and storage. The drawback of Compression is that compressed data are more vulnerable to channel noise during transmission. Previous techniques for error concealment are classified into three groups depending on the Approach employed by the encoder and decoder: Forward Error Concealment, Error Concealment by Post Processing and Interactive Error Concealment. The objective of this thesis is to develop a Concealment methodology that has the capability of both error detection and concealment, be Compatible with the JPEG2000 standard, and guarantees minimum use of channel bandwidth. A new methodology is developed to detect corrupted regions/coefficients in the received Images the edge information. The methodology requires transmission of edge information of wavelet coefficients of the original image along with JPEG2000 compressed image. At the receiver, the edge information of received wavelet coefficients is computed and compared with the received edge information of the original image to determine the corrupted coefficients. Three methods of concealment, each including a filter, are investigated to handle the corrupted regions/coefficients. MATLAB™ functions are developed that simulate channel noise, image transmission Using JPEG2000 standard and the proposed methodology. The objective quality measure such as Peak-signal-to-noise ratio (PSNR), root-mean-square error (rms) and subjective quality Measure are used to evaluate processed images. The simulation results are presented to demonstrate The performance of the proposed methodology. The results are also compared with recent approaches Found in the literature. Based on performance of the proposed approach, it is claimed that the Proposed approach can be successfully used in wireless and Internet communications

    Color image quality measures and retrieval

    Get PDF
    The focus of this dissertation is mainly on color image, especially on the images with lossy compression. Issues related to color quantization, color correction, color image retrieval and color image quality evaluation are addressed. A no-reference color image quality index is proposed. A novel color correction method applied to low bit-rate JPEG image is developed. A novel method for content-based image retrieval based upon combined feature vectors of shape, texture, and color similarities has been suggested. In addition, an image specific color reduction method has been introduced, which allows a 24-bit JPEG image to be shown in the 8-bit color monitor with 256-color display. The reduction in download and decode time mainly comes from the smart encoder incorporating with the proposed color reduction method after color space conversion stage. To summarize, the methods that have been developed can be divided into two categories: one is visual representation, and the other is image quality measure. Three algorithms are designed for visual representation: (1) An image-based visual representation for color correction on low bit-rate JPEG images. Previous studies on color correction are mainly on color image calibration among devices. Little attention was paid to the compressed image whose color distortion is evident in low bit-rate JPEG images. In this dissertation, a lookup table algorithm is designed based on the loss of PSNR in different compression ratio. (2) A feature-based representation for content-based image retrieval. It is a concatenated vector of color, shape, and texture features from region of interest (ROI). (3) An image-specific 256 colors (8 bits) reproduction for color reduction from 16 millions colors (24 bits). By inserting the proposed color reduction method into a JPEG encoder, the image size could be further reduced and the transmission time is also reduced. This smart encoder enables its decoder using less time in decoding. Three algorithms are designed for image quality measure (IQM): (1) A referenced IQM based upon image representation in very low-dimension. Previous studies on IQMs are based on high-dimensional domain including spatial and frequency domains. In this dissertation, a low-dimensional domain IQM based on random projection is designed, with preservation of the IQM accuracy in high-dimensional domain. (2) A no-reference image blurring metric. Based on the edge gradient, the degree of image blur can be measured. (3) A no-reference color IQM based upon colorfulness, contrast and sharpness

    Introducing keytagging, a novel technique for the protection of medical image-based tests

    Get PDF
    This paper introduces keytagging, a novel technique to protect medical image-based tests by implementing image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. It relies on the association of tags (binary data strings) to stable, semistable or volatile features of the image, whose access keys (called keytags) depend on both the image and the tag content. Unlike watermarking, this technique can associate information to the most stable features of the image without distortion. Thus, this method preserves the clinical content of the image without the need for assessment, prevents eavesdropping and collusion attacks, and obtains a substantial capacity-robustness tradeoff with simple operations. The evaluation of this technique, involving images of different sizes from various acquisition modalities and image modifications that are typical in the medical context, demonstrates that all the aforementioned security measures can be implemented simultaneously and that the algorithm presents good scalability. In addition to this, keytags can be protected with standard Cryptographic Message Syntax and the keytagging process can be easily combined with JPEG2000 compression since both share the same wavelet transform. This reduces the delays for associating keytags and retrieving the corresponding tags to implement the aforementioned measures to only ¿30 and ¿90. ms respectively. As a result, keytags can be seamlessly integrated within DICOM, reducing delays and bandwidth when the image test is updated and shared in secure architectures where different users cooperate, e.g. physicians who interpret the test, clinicians caring for the patient and researchers

    MIJ2K: Enhanced video transmission based on conditional replenishment of JPEG2000 tiles with motion compensation

    Get PDF
    A video compressed as a sequence of JPEG2000 images can achieve the scalability, flexibility, and accessibility that is lacking in current predictive motion-compensated video coding standards. However, streaming JPEG2000-based sequences would consume considerably more bandwidth. With the aim of solving this problem, this paper describes a new patent pending method, called MIJ2K. MIJ2K reduces the inter-frame redundancy present in common JPEG2000 sequences (also called MJP2). We apply a real-time motion detection system to perform conditional tile replenishment. This will significantly reduce the bit rate necessary to transmit JPEG2000 video sequences, also improving their quality. The MIJ2K technique can be used both to improve JPEG2000-based real-time video streaming services or as a new codec for video storage. MIJ2K relies on a fast motion compensation technique, especially designed for real-time video streaming purposes. In particular, we propose transmitting only the tiles that change in each JPEG2000 frame. This paper describes and evaluates the method proposed for real-time tile change detection, as well as the overall MIJ2K architecture. We compare MIJ2K against other intra-frame codecs, like standard Motion JPEG2000, Motion JPEG, and the latest H.264-Intra, comparing performance in terms of compression ratio and video quality, measured by standard peak signal-to-noise ratio, structural similarity and visual quality metric metrics.This work was supported in part by Projects CICYT TIN2008– 06742-C02–02/TSI, CICYT TEC2008–06732-C02–02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255 and DPS2008–07029-C02–02.Publicad

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF
    corecore