2,286 research outputs found

    Security Evaluation of Support Vector Machines in Adversarial Environments

    Full text link
    Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector Machine Applications

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    A submodular optimization framework for never-ending learning : semi-supervised, online, and active learning.

    Get PDF
    The revolution in information technology and the explosion in the use of computing devices in people\u27s everyday activities has forever changed the perspective of the data mining and machine learning fields. The enormous amounts of easily accessible, information rich data is pushing the data analysis community in general towards a shift of paradigm. In the new paradigm, data comes in the form a stream of billions of records received everyday. The dynamic nature of the data and its sheer size makes it impossible to use the traditional notion of offline learning where the whole data is accessible at any time point. Moreover, no amount of human resources is enough to get expert feedback on the data. In this work we have developed a unified optimization based learning framework that approaches many of the challenges mentioned earlier. Specifically, we developed a Never-Ending Learning framework which combines incremental/online, semi-supervised, and active learning under a unified optimization framework. The established framework is based on the class of submodular optimization methods. At the core of this work we provide a novel formulation of the Semi-Supervised Support Vector Machines (S3VM) in terms of submodular set functions. The new formulation overcomes the non-convexity issues of the S3VM and provides a state of the art solution that is orders of magnitude faster than the cutting edge algorithms in the literature. Next, we provide a stream summarization technique via exemplar selection. This technique makes it possible to keep a fixed size exemplar representation of a data stream that can be used by any label propagation based semi-supervised learning technique. The compact data steam representation allows a wide range of algorithms to be extended to incremental/online learning scenario. Under the same optimization framework, we provide an active learning algorithm that constitute the feedback between the learning machine and an oracle. Finally, the developed Never-Ending Learning framework is essentially transductive in nature. Therefore, our last contribution is an inductive incremental learning technique for incremental training of SVM using the properties of local kernels. We demonstrated through this work the importance and wide applicability of the proposed methodologies

    Differential geometric regularization for supervised learning of classifiers

    Full text link
    We study the problem of supervised learning for both binary and multiclass classification from a unified geometric perspective. In particular, we propose a geometric regularization technique to find the submanifold corresponding to an estimator of the class probability P(y|\vec x). The regularization term measures the volume of this submanifold, based on the intuition that overfitting produces rapid local oscillations and hence large volume of the estimator. This technique can be applied to regularize any classification function that satisfies two requirements: firstly, an estimator of the class probability can be obtained; secondly, first and second derivatives of the class probability estimator can be calculated. In experiments, we apply our regularization technique to standard loss functions for classification, our RBF-based implementation compares favorably to widely used regularization methods for both binary and multiclass classification.http://proceedings.mlr.press/v48/baia16.pdfPublished versio
    corecore