8,111 research outputs found

    Nonlinear Hebbian learning as a unifying principle in receptive field formation

    Get PDF
    The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common principle, namely Nonlinear Hebbian Learning. When Nonlinear Hebbian Learning is applied to natural images, receptive field shapes were strongly constrained by the input statistics and preprocessing, but exhibited only modest variation across different choices of nonlinearities in neuron models or synaptic plasticity rules. Neither overcompleteness nor sparse network activity are necessary for the development of localized receptive fields. The analysis of alternative sensory modalities such as auditory models or V2 development lead to the same conclusions. In all examples, receptive fields can be predicted a priori by reformulating an abstract model as nonlinear Hebbian learning. Thus nonlinear Hebbian learning and natural statistics can account for many aspects of receptive field formation across models and sensory modalities

    Probabilistic Auto-Associative Models and Semi-Linear PCA

    Full text link
    Auto-Associative models cover a large class of methods used in data analysis. In this paper, we describe the generals properties of these models when the projection component is linear and we propose and test an easy to implement Probabilistic Semi-Linear Auto- Associative model in a Gaussian setting. We show it is a generalization of the PCA model to the semi-linear case. Numerical experiments on simulated datasets and a real astronomical application highlight the interest of this approac

    Rule-based Machine Learning Methods for Functional Prediction

    Full text link
    We describe a machine learning method for predicting the value of a real-valued function, given the values of multiple input variables. The method induces solutions from samples in the form of ordered disjunctive normal form (DNF) decision rules. A central objective of the method and representation is the induction of compact, easily interpretable solutions. This rule-based decision model can be extended to search efficiently for similar cases prior to approximating function values. Experimental results on real-world data demonstrate that the new techniques are competitive with existing machine learning and statistical methods and can sometimes yield superior regression performance.Comment: See http://www.jair.org/ for any accompanying file
    • …
    corecore