56 research outputs found

    Improved multiple input multiple output blind equalization algorithms for medical implant communication

    Get PDF
    Medical implant sensor that is used to monitor the human physiology signals is helpful to improve the quality of life and prevent severe result from the chronic diseases. In order to achieve this, the wireless implant communication link that delivers the monitored signal to a multiple antennas external device is an essential portion. However, the existing conventional narrow band Medical Implant Communications System (MICS) has low data rate because of the bandlimited channel is allocated. To improve the data rate in the radio frequency communication, ultra-wide band technology has been proposed. However, the ultra-wide band technology is relatively new and requires living human to be the test subject in order to validate the technology performance. In this condition, the test on the new technology can rise ethical challenge. As a solution, we improve the data rate in the conventional narrow band MICS. The improvement of data rate on the narrow band implies the information bandwidth is larger than the allocated channel bandwidth, and therefore the high frequency components of the information can loss. In this case, the signal suffers the intersymbol-interference (ISI). Instead of that, the multiple antennas external device can receive the signal from other transmitting implant sensor which has the same operating frequency. As a result, the signal is further hampered by co-channel interference (CCI). To recover the signal from the ISI and CCI, multiple-input multiple output (MIMO) blind equalization that has source separation ability can be exploited. Cross-Correlation Constant Modulus Algorithm (CC-CMA) is the conventional MIMO blind equalization algorithm that can suppress ISI and CCI and able to perform source separation. However, CC-CMA has only been analyzed and simulated in the modulation of Phase Shift Keying (PSK). The performance of CC-CMA in multi-modulus modulation scheme such as 4-Pulse-amplitude modulation (PAM) and 16-Quadrature amplitude modulation (QAM), which has higher data rate than PSK, has not been analyzed. Therefore, our work is to analysis and optimize CC-CMA on the multi-modulus modulation scheme. From our analysis, we found that the cost function of CC-CMA is biased cost function. Instead of that, from our simulation, CC-CMA introduces an unexpected shrinking effect whereby the amplitudes of the equalizer outputs have been reduced, especially in multi-modulus modulation scheme. This shrinking effect is not severe in PSK because the decision of a PSK symbol is based on phase, but not amplitude. Unfortunately, this is severe in multi-modulus modulation scheme. To overcome this shrinking effect in multi-modulus modulation scheme, we propose Cross-Independent Constant Modulus Algorithm (CI-CMA). Based on the convergence analysis, we identify the new optimum dispersion value and mixing parameter in CI-CMA. From the simulation results, we confirm that CI-CMA is able to perform equalization and source separation in the multi-modulus modulation scheme. In order to improve the steady state performance of CI-CMA, we perform the steady state mean square error (MSE) analysis of CI-CMA using the energy preservation theorem that was developed by Mai and Sayed in 2001, and our result is more accurate than the previous work. From our analysis, only the reduction in adaptation step size can reduce the steady state MSE, but it is well known that the MSE is indeed a tradeoff with the speed of convergence. Therefore without sacrificing convergence speed, our last effort is to propose hybrid algorithms. The hybrid algorithms are done by combining a new adaptive constant modulus algorithm (ACMA), a decision directed algorithm and a cross-correlation function. From the simulation results, we found that the hybrid algorithms can show low steady state error and thereby improve the reliability of the communication link. The main achievement of this thesis is the discovery of new dispersion value through the convergence analysis

    Contribution à la conception d'un système de radio impulsionnelle ultra large bande intelligent

    No full text
    Faced with an ever increasing demand of high data-rates and improved adaptability among existing systems, which inturn is resulting in spectrum scarcity, the development of new radio solutions becomes mandatory in order to answer the requirements of these emergent applications. Among the recent innovations in the field of wireless communications,ultra wideband (UWB) has generated significant interest. Impulse based UWB (IR-UWB) is one attractive way of realizing UWB systems, which is characterized by the transmission of sub nanoseconds UWB pulses, occupying a band width up to 7.5 GHz with extremely low power density. This large band width results in several captivating features such as low-complexity low-cost transceiver, ability to overlay existing narrowband systems, ample multipath diversity, and precise ranging at centimeter level due to extremely fine temporal resolution.In this PhD dissertation, we investigate some of the key elements in the realization of an intelligent time-hopping based IR-UWB system. Due to striking resemblance of IR-UWB inherent features with cognitive radio (CR) requirements, acognitive UWB based system is first studied. A CR in its simplest form can be described as a radio, which is aware ofits surroundings and adapts intelligently. As sensing the environment for the availability of resources and then consequently adapting radio’s internal parameters to exploit them opportunistically constitute the major blocks of any CR, we first focus on robust spectrum sensing algorithms and the design of adaptive UWB waveforms for realizing a cognitive UWB radio. The spectrum sensing module needs to function with minimum a-priori knowledge available about the operating characteristics and detect the primary users as quickly as possible. Keeping this in mind, we develop several spectrum sensing algorithms invoking recent results on the random matrix theory, which can provide efficient performance with a few number of samples. Next, we design the UWB waveform using a linear combination of Bsp lines with weight coefficients being optimized by genetic algorithms. This results in a UWB waveform that is spectrally efficient and at the same time adaptable to incorporate the cognitive radio requirements. In the 2nd part of this thesis, some research challenges related to signal processing in UWB systems, namely synchronization and dense multipath channel estimation are addressed. Several low-complexity non-data-aided (NDA) synchronization algorithms are proposed for BPSK and PSM modulations, exploiting either the orthogonality of UWB waveforms or theinherent cyclostationarity of IR-UWB signaling. Finally, we look into the channel estimation problem in UWB, whichis very demanding due to particular nature of UWB channels and at the same time very critical for the coherent Rake receivers. A method based on a joint maximum-likelihood (ML) and orthogonal subspace (OS) approaches is proposed which exhibits improved performance than both of these methods individually.Face à une demande sans cesse croissante de haut débit et d’adaptabilité des systèmes existants, qui à son tour se traduit par l’encombrement du spectre, le développement de nouvelles solutions dans le domaine des communications sans fil devient nécessaire afin de répondre aux exigences des applications émergentes. Parmi les innovations récentes dans ce domaine, l’ultra large bande (UWB) a suscité un vif intérêt. La radio impulsionnelle UWB (IR-UWB), qui est une solution intéressante pour réaliser des systèmes UWB, est caractérisée par la transmission des impulsions de très courte durée, occupant une largeur de bande allant jusqu’à 7,5 GHz, avec une densité spectrale de puissance extrêmement faible. Cette largeur de bande importante permet de réaliser plusieurs fonctionnalités intéressantes, telles que l’implémentation à faible complexité et à coût réduit, la possibilité de se superposer aux systèmes à bande étroite, la diversité spatiale et la localisation très précise de l’ordre centimétrique, en raison de la résolution temporelle très fine.Dans cette thèse, nous examinons certains éléments clés dans la réalisation d'un système IR-UWB intelligent. Nous avons tout d’abord proposé le concept de radio UWB cognitive à partir des similarités existantes entre l'IR-UWB et la radio cognitive. Dans sa définition la plus simple, un tel système est conscient de son environnement et s'y adapte intelligemment. Ainsi, nous avons tout d’abord focalisé notre recherché sur l’analyse de la disponibilité des ressources spectrales (spectrum sensing) et la conception d’une forme d’onde UWB adaptative, considérées comme deux étapes importantes dans la réalisation d'une radio cognitive UWB. Les algorithmes de spectrum sensing devraient fonctionner avec un minimum de connaissances a priori et détecter rapidement les utilisateurs primaires. Nous avons donc développé de tels algorithmes utilisant des résultats récents sur la théorie des matrices aléatoires, qui sont capables de fournir de bonnes performances, avec un petit nombre d'échantillons. Ensuite, nous avons proposé une méthode de conception de la forme d'onde UWB, vue comme une superposition de fonctions B-splines, dont les coefficients de pondération sont optimisés par des algorithmes génétiques. Il en résulte une forme d'onde UWB qui est spectralement efficace et peut s’adapter pour intégrer les contraintes liées à la radio cognitive. Dans la 2ème partie de cette thèse, nous nous sommes attaqués à deux autres problématiques importantes pour le fonctionnement des systèmes UWB, à savoir la synchronisation et l’estimation du canal UWB, qui est très dense en trajets multiples. Ainsi, nous avons proposé plusieurs algorithmes de synchronisation, de faible complexité et sans séquence d’apprentissage, pour les modulations BPSK et PSM, en exploitant l'orthogonalité des formes d'onde UWB ou la cyclostationnarité inhérente à la signalisation IR-UWB. Enfin, nous avons travaillé sur l'estimation du canal UWB, qui est un élément critique pour les récepteurs Rake cohérents. Ainsi, nous avons proposé une méthode d’estimation du canal basée sur une combinaison de deux approches complémentaires, le maximum de vraisemblance et la décomposition en sous-espaces orthogonaux,d’améliorer globalement les performances

    Wireless Positioning Applications in Multipath Environments

    Get PDF
    Funklokalisierung in der Umgebung mit der Mehrwegeausbreitung In den vergangenen Jahren wurde zunehmend Forschung im Bereich drahtlose Sensornetzwerk (engl. „Wireless Sensor Network“) betrieben. Lokalisierung im Innenraum ist ein vielversprechendes Forschungsthema, das in den Literaturen vielfältig diskutiert wird. Jedoch berücksichtigen die meisten Arbeiten einen wichtigen Faktor nicht, nämlich die Mehrwegeausbreitung, welche die Genauigkeit der Lokalisierung beeinflusst. Diese Arbeit bezieht sich auf Lokalisierungsanwendungen in UWB (Ultra-Breitband-Technologie)- und WLAN (drahtloses lokales Netzwerk)- Systemen im Fall von Mehrwegeausbreitung. Zur Steigerung der Robustheit der Lokalisierungsanwendungen bei Mehrwegeausbreitung wurden neuartige Lokalisierungsalgorithmen, die auf der Auswertung der Ankunftszeit (engl. „Time of Arrival“, ToA), der empfangenen Signalstärke (engl. „Received Signal Strength“, RSS) und dem Einfallswinkel (engl. „Angle of Arrival“, AoA) basieren, vorgestellt und untersucht. Bei Mehrwegeausbreitung ist die Fragen den direkten Pfad zu lösen, da der direkte Pfad (engl. „Direct Path“, DP) schwächer als anderer Pfad sein kann. In dieser Arbeit werden daher neuartige Algorithmen zur Flankendetektion der empfangenen Signale für UWB Systeme entwickelt, um die Positionsbestimmung zu verbessern: Es gibt die kooperative Flankendetektion (engl. „Joint Leading Edge Detection“, JLED), die erweiterte maximalwahrscheinlichkeitbasierte Kanalschätzung (engl. „Improved Maximum Likelihood Channel Estimation“, IMLCE) und die Flankendetektion mit untervektorraumbasiertem Verfahren (engl. „Subspace based Approaches“, SbA). Bei der kooperativen Flankendetektion werden zwei Kriterien herangezogen nämlich die minimale Fläche und das minimale mittlere Quadrat des Schätzfehlers (engl. „Minimum Mean Squared Error“, MMSE). Weiterhin wird ein monopulsbasierter Kanalschätzer (engl. „Monopulse based Channel Estimator“, MCE) entwickelt, um die möglicherweise falsche Kombinationen der Flanken (engl. „Leading Edge Combination“, LEC) auszuschließen. Zudem wird in der Arbeit der erweiterte MLCE vorgestellt, der aus einem groben und einem genauen Schätzungsschritt besteht. Bei dem neuartigen untervektorraumbasierten Verfahren werden ein statischer und ein Schwundkanal untersucht. Im ersten Fall wird die Kombination der Rückwärtssuchalgorithmus mit untervektorraumbasierten Verfahren untersucht. Zudem wird im zweiten Fall ein untervektorraumbasierte Verfahren im Frequenzbereich vorgestellt. Für die RSS-basierte Lokalisierung wird ein Fingerabdruckverfahren (engl. „Fingerprint Approach“) und ein neuartiger Entfernungsschätzer basierend auf der Kanalenergie entwickelt und implementiert. Schließlich wird in der Arbeit ein Lokalisierungssystem mit Winkelschätzern inklusive einer entsprechenden Kalibrierung auf einer 802.11a/g Hardwareplattform vorgestellt. Dazu wird ein neuartiger Trägerschätzer und Kanalschätzer entwickelt.In the past several years there has been more growing research on Wireless Sensor Network (WSN). The indoor localization is a promising research topic, which is discussed variously in some literatures. However, the most work does not consider an important factor, i.e. the multi-path propagation, which affects the accuracy of the indoor localization. This work dealt with the indoor localization applied in UWB (Ultra Wide Band) and WLAN (Wireless Local Area Network) systems in the case of multi-path propagation. To improve the robustness of the applications of localization in the case of multi-path propagation, novel localization algorithms based on the evaluation of the Time of Arrival (ToA), the Received Signal Strength (RSS) and the Angle of Arrival (AoA) were proposed and investigated. In the ToA based localization systems, the detection of shortest signal propagation time plays a critical role. In the case of multi-path propagation, the Direct Path (DP) needs to be resolved because the DP may be weaker than Multi Path Components (MPC). Thus the novel algorithms for leading edge detection were developed in this work in order to improve the accuracy of localization, namely Joint Leading Edge Detection (JLED), Improved Maximum Likelihood Channel Estimation (IMLCE) and the leading edge detection with Subspace based Approaches (SbA). Two criteria were proposed and referenced for the JLED, namely Minimum Area (MA) and Minimum Mean Squared Error (MMSE). Furthermore, a monocycle-based channel estimator was developed to mitigate the fake LECs (Leading Edge Combination). The estimation error of JLED was theoretically analyzed and simulated for evaluation of the estimator. IMLCE consists of a coarse and a fine estimation step. The coarse position of the first correlation peak shall be found with the Search Back Algorithms (SBA), which is followed by MLCE-algorithms. The novel SbA was investigated in a static and a fading channel. In the former case, the iterative algorithm, which combines SbA with SBA, was investigated. In the latter case, the FD-SbA (Frequency Domain - SbA) was proposed, which requires to calculate the covariance matrix in the FD. For the RSS based localization, fingerprint approach and the novel channel energy based distance estimator were investigated and developed in this dissertation. Finally, a localization system using AoA estimation and the initial calibration was presented on an 802.11a/g hardware platform. A novel Carrier Frequency Offset (CFO) estimator and channel estimator were investigated and developed. The measurement campaigns were made for one, two and four fixed stations, respectivel

    UWB communication systems acquisition at symbol rate sampling for IEEE standard channel models

    Get PDF
    For ultra-wideband (UWB) communications, acquisition is challenging. The reason is from the ultra short pulse shape and ultra dense multipath interference. Ultra short pulse indicates the acquisition region is very narrow. Sampling is another challenge for UWB design due to the need for ultra high speed analog-to digital converter.A sub-optimum and under-sampling scheme using pilot codes as transmitted reference is proposed here for acquisition. The sampling rate for the receiver is at the symbol rate. A new architecture, the reference aided matched filter is studied in this project. The reference aided matched filter method avoids using complex rake receiver to estimate channel parameters and high sampling rate for interpolation. A limited number of matched filters are used as a filter bank to search for the strongest path. Timing offset for acquisition is then estimated and passed to an advanced verification algorithm. For optimum performance of acquisition, the adaptive post detection integration is proposed to solve the problem from dense inter-symbol interference during the acquisition. A low-complex early-late gate tracking loop is one element of the adaptive post detection integration. This tracking scheme assists in improving acquisition accuracy. The proposed scheme is evaluated using Matlab Simulink simulations in term of mean acquisition time, system performance and false alarm. Simulation results show proposed algorithm is very effective in ultra dense multipath channels. This research proves reference aided acquisition with tracking loop is promising in UWB application

    Signal Subspace Processing in the Beam Space of a True Time Delay Beamformer Bank

    Get PDF
    A number of techniques for Radio Frequency (RF) source location for wide bandwidth signals have been described that utilize coherent signal subspace processing, but often suffer from limitations such as the requirement for preliminary source location estimation, the need to apply the technique iteratively, computational expense or others. This dissertation examines a method that performs subspace processing of the data from a bank of true time delay beamformers. The spatial diversity of the beamformer bank alleviates the need for a preliminary estimate while simultaneously reducing the dimensionality of subsequent signal subspace processing resulting in computational efficiency. The pointing direction of the true time delay beams is independent of frequency, which results in a mapping from element space to beam space that is wide bandwidth in nature. This dissertation reviews previous methods, introduces the present method, presents simulation results that demonstrate the assertions, discusses an analysis of performance in relation to the Cramer-Rao Lower Bound (CRLB) with various levels of noise in the system, and discusses computational efficiency. One limitation of the method is that in practice it may be appropriate for systems that can tolerate a limited field of view. The application of Electronic Intelligence is one such application. This application is discussed as one that is appropriate for a method exhibiting high resolution of very wide bandwidth closely spaced sources and often does not require a wide field of view. In relation to system applications, this dissertation also discusses practical employment of the novel method in terms of antenna elements, arrays, platforms, engagement geometries, and other parameters. The true time delay beam space method is shown through modeling and simulation to be capable of resolving closely spaced very wideband sources over a relevant field of view in a single algorithmic pass, requiring no course preliminary estimation, and exhibiting low computational expense superior to many previous wideband coherent integration techniques

    Signal Processing for Improved Wireless Receiver Performance

    Get PDF

    Impulsive noise cancellation and channel estimation in power line communication systems

    Get PDF
    Power line communication (PLC) is considered as the most viable enabler of the smart grid. PLC exploits the power line infrastructure for data transmission and provides an economical communication backbone to support the requirements of smart grid applications. Though PLC brings a lot of benefits to the smart grid implementation, impairments such as frequency selective attenuation of the high-frequency communication signal, the presence of impulsive noise (IN) and the narrowband interference (NBI) from closely operating wireless communication systems, make the power line a hostile environament for reliable data transmission. Hence, the main objective of this dissertation is to design signal processing algorithms that are specifically tailored to overcome the inevitable impairments in the power line environment. First, we propose a novel IN mitigation scheme for PLC systems. The proposed scheme actively estimates the locations of IN samples and eliminates the effect of IN only from the contaminated samples of the received signal. By doing so, the typical problem encountered while mitigating the IN is avoided by using passive IN power suppression algorithms, where samples besides the ones containing the IN are also affected creating additional distortion in the received signal. Apart from the IN, the PLC transmission is also impaired by NBI. Exploiting the duality of the problem where the IN is impulsive in the time domain and the NBI is impulsive in the frequency domain, an extended IN mitigation algorithm is proposed in order to accurately estimate and effectively cancel both impairments from the received signal. The numerical validation of the proposed schemes shows improved BER performance of PLC systems in the presence of IN and NBI. Secondly, we pay attention to the problem of channel estimation in the power line environment. The presence of IN makes channel estimation challenging for PLC systems. To accurately estimate the channel, two maximumlikelihood (ML) channel estimators for PLC systems are proposed in this thesis. Both ML estimators exploit the estimated IN samples to determine the channel coefficients. Among the proposed channel estimators, one treats the estimated IN as a deterministic quantity, and the other assumes that the estimated IN is a random quantity. The performance of both estimators is analyzed and numerically evaluated to show the superiority of the proposed estimators in comparison to conventional channel estimation strategies in the presence of IN. Furthermore, between the two proposed estimators, the one that is based on the random approach outperforms the deterministic one in all typical PLC scenarios. However, the deterministic approach based estimator can perform consistent channel estimation regardless of the IN behavior with less computational effort and becomes an efficient channel estimation strategy in situations where high computational complexity cannot be afforded. Finally, we propose two ML algorithms to perform a precise IN support detection. The proposed algorithms perform a greedy search of the samples in the received signal that are contaminated by IN. To design such algorithms, statistics defined for deterministic and random ML channel estimators are exploited and two multiple hypothesis tests are built according to Bonferroni and Benjamini and Hochberg design criteria. Among the proposed estimators, the random ML-based approach outperforms the deterministic ML-based approach while detecting the IN support in typical power line environment. Hence, this thesis studies the power line environment for reliable data transmission to support smart grid. The proposed signal processing schemes are robust and allow PLC systems to effectively overcome the major impairments in an active electrical network.The efficient mitigation of IN and NBI and accurate estimation of channel enhances the applicability of PLC to support critical applications that are envisioned for the future electrical power grid.La comunicación a través de líneas de transmisión eléctricas (PLC) se considera uno de los habilitadores principales de la red eléctrica inteligente (smart grid). PLC explota la infraestructura de la red eléctrica para la transmisión de datos y proporciona una red troncal de comunicación económica para poder cumplir con los requisitos de las aplicaciones para smart grids. Si bien la tecnología PLC aporta muchos beneficios a la implementación de la smart grid, los impedimentos, como la atenuación selectiva en frecuencia de la señal de comunicación, la presencia de ruido impulsivo (IN) y las interferencias de banda estrecha (NBI) de los sistemas de comunicación inalámbrica de operación cercana, hacen que la red eléctrica sea un entorno hostil para la transmisión fiable de datos. En este contexto, el objetivo principal de esta tesis es diseñar algoritmos de procesado de señal que estén específicamente diseñados para superar los impedimentos inevitables en el entorno de la red eléctrica como son IN y NBI. Primeramente, proponemos un nuevo esquema de mitigación de IN en sistemas PLC. El esquema propuesto estima activamente las ubicaciones de las muestras de IN y elimina el efecto de IN solo en las muestras contaminadas de la señal recibida. Al hacerlo, el problema típico que se encuentra al mitigar el IN con técnicas tradicionales (donde también se ven afectadas otras muestras que contienen la IN, creando una distorsión adicional en la señal recibida) se puede evitar con la consiguiente mejora del rendimiento. Aparte de IN, los sistemas PLC también se ven afectados por el NBI. Aprovechando la dualidad del problema (el IN es impulsivo en el dominio del tiempo y el NBI es impulsivo en el dominio de la frecuencia), se propone un algoritmo de mitigación de IN ampliado para estimar con precisión y cancelar efectivamente ambas degradaciones de la señal recibida. La validación numérica de los esquemas propuestos muestra un mejor rendimiento en términos de tasa de error de bit (BER) en sistemas PLC con presencia de IN y NBI. En segundo lugar, prestamos atención al problema de la estimación de canal en entornos PLC. La presencia de IN hace que la estimación de canal sea un desafío para los sistemas PLC futuros. En esta tesis, se proponen dos estimadores de canal para sistemas PLC de máxima verosimilitud (ML) para sistemas PLC. Ambos estimadores ML explotan las muestras IN estimadas para determinar los coeficientes del canal. Entre los estimadores de canal propuestos, uno trata la IN estimada como una cantidad determinista, y la otra asume que la IN estimada es una cantidad aleatoria. El rendimiento de ambos estimadores se analiza y se evalúa numéricamente para mostrar la superioridad de los estimadores propuestos en comparación con las estrategias de estimación de canales convencionales en presencia de IN. Además, entre los dos estimadores propuestos, el que se basa en el enfoque aleatorio supera el determinista en escenarios PLC típicos. Sin embargo, el estimador basado en el enfoque determinista puede llevar a cabo una estimación de canal consistente independientemente del comportamiento de la IN con menos esfuerzo computacional y se convierte en una estrategia de estimación de canal eficiente en situaciones donde no es posible disponer de una alta complejidad computacionalPostprint (published version
    • …
    corecore