170,184 research outputs found

    Multiscale Fields of Patterns

    Full text link
    We describe a framework for defining high-order image models that can be used in a variety of applications. The approach involves modeling local patterns in a multiscale representation of an image. Local properties of a coarsened image reflect non-local properties of the original image. In the case of binary images local properties are defined by the binary patterns observed over small neighborhoods around each pixel. With the multiscale representation we capture the frequency of patterns observed at different scales of resolution. This framework leads to expressive priors that depend on a relatively small number of parameters. For inference and learning we use an MCMC method for block sampling with very large blocks. We evaluate the approach with two example applications. One involves contour detection. The other involves binary segmentation.Comment: In NIPS 201

    A Fast Object Recognition Using Edge Texture Analysis for Image Retrieval

    Full text link
    A Robust Object Recognition for Content Based Image Retrieval (CBIR) based on Discriminative Robust Local Binary Pattern (DRLBP) and Local Ternary Pattern (LTP) analysis. The Robust Object Recognition using edge and texture feature extraction. The extension of Local Binary Pattern (LBP) is called DRLBP. The category recognition system will be developed for application to image retrieval. The category recognition is to classify an object into one of several predefined categories. LBP is defined as an ordered set of binary comparisons of pixel intensities between the center pixel and its eight surrounding pixels .DRLBP features identifying the contrast information of image patterns. The proposed features preserve the contrast information of image patterns. The DRLBP discriminates an object like the object surface texture and the object shape formed by its boundary

    Innovative local texture descriptors with application to eye detection

    Get PDF
    Local Binary Patterns (LBP), which is one of the well-known texture descriptors, has broad applications in pattern recognition and computer vision. The attractive properties of LBP are its tolerance to illumination variations and its computational simplicity. However, LBP only compares a pixel with those in its own neighborhood and encodes little information about the relationship of the local texture with the features. This dissertation introduces a new Feature Local Binary Patterns (FLBP) texture descriptor that can compare a pixel with those in its own neighborhood as well as in other neighborhoods and encodes the information of both local texture and features. The features encoded in FLBP are broadly defined, such as edges, Gabor wavelet features, and color features. Specifically, a binary image is first derived by extracting feature pixels from a given image, and then a distance vector field is obtained by computing the distance vector between each pixel and its nearest feature pixel defined in the binary image. Based on the distance vector field and the FLBP parameters, the FLBP representation of the given image is derived. The feasibility of the proposed FLBP is demonstrated on eye detection using the BioID and the FERET databases. Experimental results show that the FLBP method significantly improves upon the LBP method in terms of both the eye detection rate and the eye center localization accuracy. As LBP is sensitive to noise especially in near-uniform image regions, Local Ternary Patterns (LTP) was proposed to address this problem by extending LBP to three-valued codes. However, further research reveals that both LTP and LBP achieve similar results for face and facial expression recognition, while LTP has a higher computational cost than LBP. To improve upon LTP, this dissertation introduces another new local texture descriptor: Local Quaternary Patterns (LQP) and its extension, Feature Local Quaternary Patterns (FLQP). LQP encodes four relationships of local texture, and therefore, it includes more information of local texture than the LBP and the LTP. FLQP, which encodes both local and feature information, is expected to perform even better than LQP for texture description and pattern analysis. The LQP and FLQP are applied to eye detection on the BioID database. Experimental results show that both FLQP and LQP achieve better eye detection performance than FLTP, LTP, FLBP and LBP. The FLQP method achieves the highest eye detection rate

    On Relaxed Averaged Alternating Reflections (RAAR) Algorithm for Phase Retrieval from Structured Illuminations

    Full text link
    In this paper, as opposed to the random phase masks, the structured illuminations with a pixel-dependent deterministic phase shift are considered to derandomize the model setup. The RAAR algorithm is modified to adapt to two or more diffraction patterns, and the modified RAAR algorithm operates in Fourier domain rather than space domain. The local convergence of the RAAR algorithm is proved by some eigenvalue analysis. Numerical simulations is presented to demonstrate the effectiveness and stability of the algorithm compared to the HIO (Hybrid Input-Output) method. The numerical performances show the global convergence of the RAAR in our tests.Comment: 17 pages, 26 figures, submitting to Inverse Problem

    Local Higher-Order Statistics (LHS) describing images with statistics of local non-binarized pixel patterns

    Get PDF
    Accepted for publication in International Journal of Computer Vision and Image Understanding (CVIU)International audienceWe propose a new image representation for texture categorization and facial analysis, relying on the use of higher-order local differential statistics as features. It has been recently shown that small local pixel pattern distributions can be highly discriminative while being extremely efficient to compute, which is in contrast to the models based on the global structure of images. Motivated by such works, we propose to use higher-order statistics of local non-binarized pixel patterns for the image description. The proposed model does not require either (i) user specified quantization of the space (of pixel patterns) or (ii) any heuristics for discarding low occupancy volumes of the space. We propose to use a data driven soft quantization of the space, with parametric mixture models, combined with higher-order statistics, based on Fisher scores. We demonstrate that this leads to a more expressive representation which, when combined with discriminatively learned classifiers and metrics, achieves state-of-the-art performance on challenging texture and facial analysis datasets, in low complexity setup. Further, it is complementary to higher complexity features and when combined with them improves performance
    • …
    corecore