66 research outputs found

    Indefinite Knapsack Separable Quadratic Programming: Methods and Applications

    Get PDF
    Quadratic programming (QP) has received significant consideration due to an extensive list of applications. Although polynomial time algorithms for the convex case have been developed, the solution of large scale QPs is challenging due to the computer memory and speed limitations. Moreover, if the QP is nonconvex or includes integer variables, the problem is NP-hard. Therefore, no known algorithm can solve such QPs efficiently. Alternatively, row-aggregation and diagonalization techniques have been developed to solve QP by a sub-problem, knapsack separable QP (KSQP), which has a separable objective function and is constrained by a single knapsack linear constraint and box constraints. KSQP can therefore be considered as a fundamental building-block to solve the general QP and is an important class of problems for research. For the convex KSQP, linear time algorithms are available. However, if some quadratic terms or even only one term is negative in KSQP, the problem is known to be NP-hard, i.e. it is notoriously difficult to solve. The main objective of this dissertation is to develop efficient algorithms to solve general KSQP. Thus, the contributions of this dissertation are five-fold. First, this dissertation includes comprehensive literature review for convex and nonconvex KSQP by considering their computational efficiencies and theoretical complexities. Second, a new algorithm with quadratic time worst-case complexity is developed to globally solve the nonconvex KSQP, having open box constraints. Third, the latter global solver is utilized to develop a new bounding algorithm for general KSQP. Fourth, another new algorithm is developed to find a bound for general KSQP in linear time complexity. Fifth, a list of comprehensive applications for convex KSQP is introduced, and direct applications of indefinite KSQP are described and tested with our newly developed methods. Experiments are conducted to compare the performance of the developed algorithms with that of local, global, and commercial solvers such as IBM CPLEX using randomly generated problems in the context of certain applications. The experimental results show that our proposed methods are superior in speed as well as in the quality of solutions

    Submodularity in Action: From Machine Learning to Signal Processing Applications

    Full text link
    Submodularity is a discrete domain functional property that can be interpreted as mimicking the role of the well-known convexity/concavity properties in the continuous domain. Submodular functions exhibit strong structure that lead to efficient optimization algorithms with provable near-optimality guarantees. These characteristics, namely, efficiency and provable performance bounds, are of particular interest for signal processing (SP) and machine learning (ML) practitioners as a variety of discrete optimization problems are encountered in a wide range of applications. Conventionally, two general approaches exist to solve discrete problems: (i)(i) relaxation into the continuous domain to obtain an approximate solution, or (ii)(ii) development of a tailored algorithm that applies directly in the discrete domain. In both approaches, worst-case performance guarantees are often hard to establish. Furthermore, they are often complex, thus not practical for large-scale problems. In this paper, we show how certain scenarios lend themselves to exploiting submodularity so as to construct scalable solutions with provable worst-case performance guarantees. We introduce a variety of submodular-friendly applications, and elucidate the relation of submodularity to convexity and concavity which enables efficient optimization. With a mixture of theory and practice, we present different flavors of submodularity accompanying illustrative real-world case studies from modern SP and ML. In all cases, optimization algorithms are presented, along with hints on how optimality guarantees can be established

    An improved penalty algorithm using model order reduction for MIPDECO problems with partial observations

    Get PDF
    This work addresses optimal control problems governed by a linear time-dependent partial differential equation (PDE) as well as integer constraints on the control. Moreover, partial observations are assumed in the objective function. The resulting problem poses several numerical challenges due to the mixture of combinatorial aspects, induced by integer variables, and large scale linear algebra issues, arising from the PDE discretization. Since classical solution approaches such as the branch-and-bound framework are typically overwhelmed by such large-scale problems, this work extends an improved penalty algorithm proposed by the authors, to the time-dependent setting. The main contribution is a novel combination of an interior point method, preconditioning, and model order reduction yielding a tailored local optimization solver at the heart of the overall solution procedure. A thorough numerical investigation is carried out both for the heat equation as well as a convection-diffusion problem demonstrating the versatility of the approach

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International Scientific Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...

    Heuristic algorithms in optimization

    Get PDF
    Práce se zabývá určením pravděpodobnostních rozdělení pro stochastické programování, při kterém jsou optimální hodnoty účelové funkce extrémní (minimální nebo maximální). Rozdělení se určuje pomocí heuristických metod, konkrétně pomocí genetických algoritmů, kde celá populace aproximuje hledané rozdělení. První kapitoly popisují obecně matematické a stochastické programování a dále jsou popsány různé heuristické metody a s důrazem na genetické algoritmy. Těžiště práce je v naprogramování daného algoritmu a otestování na úlohách lineárních a kvadratických stochastických modelů.The thesis deals with stochastic programming and determining probability distributions which cause extreme optimal values (maximal or minimal) of an objective function. The probability distribution is determined by heuristic method, especially by genetic algorithms, where whole population approximates desired distribution. The first parts of the thesis describe mathematical and stochastic programming in general and also there are described various heuristic methods with emphasis on genetic algorithms. The goal of the diploma thesis is to create a program which tests the algorithm on linear and quadratic stochastic models.

    Convex Mathematical Programs for Relational Matching of Object Views

    Full text link
    Automatic recognition of objects in images is a difficult and challenging task in computer vision which has been tackled in many different ways. Based on the powerful and widely used concept to represent objects and scenes as relational structures, the problem of graph matching, i.e. to find correspondences between two graphs is a part of the object recognition problem. Belonging to the field of combinatorial optimization graph matching is considered to be one of the most complex problems in computer vision: It is known to be NP-complete in the general case. In this thesis, two novel approaches to the graph matching problem are proposed and investigated. They are based on recent progress in the mathematical literature on convex programming. Starting out from describing the desired matchings by suitable objective functions in terms of binary variables, relaxations of combinatorial constraints and an adequate adaption of the objective function lead to continuous convex optimization problems which can be solved without parameter tuning and in polynomial time. A subsequent post-processing step results in feasible, sub-optimal combinatorial solutions to the original decision problem. In the first part of this thesis, the connection between specific graph-matching problems and the quadratic assignment problem is explored. In this case, the convex relaxation leads to a convex quadratic program , which is combined with a linear program for post-processing. Conditions under which the quadratic assignment representation is adequate from the computer vision point of view are investigated, along with attempts to relax these conditions by modifying the approach accordingly. The second part of this work focuses directly on the matching of subgraphs -- representing a model -- to a considerably larger scene graph. A bipartite matching is extended with a quadratic regularization term to take into account relations within each set of vertices. Based on this convex relaxation, post-processing and the application to computer vision are investigated and discussed. Numerical experiments reveal both the power and the limitations of the approach. For problems of sizes which occur in applications the approach is quite reasonable and often the combinatorial optimal solution is found. For larger instances the intrinsic combinatorial nature of the problem comes out and leads to sub-optimal solutions which, however, are still good

    Feature Subset Selection in Intrusion Detection Using Soft Computing Techniques

    Get PDF
    Intrusions on computer network systems are major security issues these days. Therefore, it is of utmost importance to prevent such intrusions. The prevention of such intrusions is entirely dependent on their detection that is a main part of any security tool such as Intrusion Detection System (IDS), Intrusion Prevention System (IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Therefore, accurate detection of network attack is imperative. A variety of intrusion detection approaches are available but the main problem is their performance, which can be enhanced by increasing the detection rates and reducing false positives. Such weaknesses of the existing techniques have motivated the research presented in this thesis. One of the weaknesses of the existing intrusion detection approaches is the usage of a raw dataset for classification but the classifier may get confused due to redundancy and hence may not classify correctly. To overcome this issue, Principal Component Analysis (PCA) has been employed to transform raw features into principal features space and select the features based on their sensitivity. The sensitivity is determined by the values of eigenvalues. The recent approaches use PCA to project features space to principal feature space and select features corresponding to the highest eigenvalues, but the features corresponding to the highest eigenvalues may not have the optimal sensitivity for the classifier due to ignoring many sensitive features. Instead of using traditional approach of selecting features with the highest eigenvalues such as PCA, this research applied a Genetic Algorithm (GA) to search the principal feature space that offers a subset of features with optimal sensitivity and the highest discriminatory power. Based on the selected features, the classification is performed. The Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used for classification purpose due to their proven ability in classification. This research work uses the Knowledge Discovery and Data mining (KDD) cup dataset, which is considered benchmark for evaluating security detection mechanisms. The performance of this approach was analyzed and compared with existing approaches. The results show that proposed method provides an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates

    The development and application of metaheuristics for problems in graph theory: A computational study

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.It is known that graph theoretic models have extensive application to real-life discrete optimization problems. Many of these models are NP-hard and, as a result, exact methods may be impractical for large scale problem instances. Consequently, there is a great interest in developing e±cient approximate methods that yield near-optimal solutions in acceptable computational times. A class of such methods, known as metaheuristics, have been proposed with success. This thesis considers some recently proposed NP-hard combinatorial optimization problems formulated on graphs. In particular, the min- imum labelling spanning tree problem, the minimum labelling Steiner tree problem, and the minimum quartet tree cost problem, are inves- tigated. Several metaheuristics are proposed for each problem, from classical approximation algorithms to novel approaches. A compre- hensive computational investigation in which the proposed methods are compared with other algorithms recommended in the literature is reported. The results show that the proposed metaheuristics outper- form the algorithms recommended in the literature, obtaining optimal or near-optimal solutions in short computational running times. In addition, a thorough analysis of the implementation of these methods provide insights for the implementation of metaheuristic strategies for other graph theoretic problems

    Automation of reverse engineering process in aircraft modeling and related optimization problems

    Get PDF
    During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for quadratic programming problems
    corecore