261 research outputs found

    Hypercellular graphs: partial cubes without Q3Q_3^- as partial cube minor

    Full text link
    We investigate the structure of isometric subgraphs of hypercubes (i.e., partial cubes) which do not contain finite convex subgraphs contractible to the 3-cube minus one vertex Q3Q^-_3 (here contraction means contracting the edges corresponding to the same coordinate of the hypercube). Extending similar results for median and cellular graphs, we show that the convex hull of an isometric cycle of such a graph is gated and isomorphic to the Cartesian product of edges and even cycles. Furthermore, we show that our graphs are exactly the class of partial cubes in which any finite convex subgraph can be obtained from the Cartesian products of edges and even cycles via successive gated amalgams. This decomposition result enables us to establish a variety of results. In particular, it yields that our class of graphs generalizes median and cellular graphs, which motivates naming our graphs hypercellular. Furthermore, we show that hypercellular graphs are tope graphs of zonotopal complexes of oriented matroids. Finally, we characterize hypercellular graphs as being median-cell -- a property naturally generalizing the notion of median graphs.Comment: 35 pages, 6 figures, added example answering Question 1 from earlier draft (Figure 6.

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    Ramsey expansions of metrically homogeneous graphs

    Full text link
    We discuss the Ramsey property, the existence of a stationary independence relation and the coherent extension property for partial isometries (coherent EPPA) for all classes of metrically homogeneous graphs from Cherlin's catalogue, which is conjectured to include all such structures. We show that, with the exception of tree-like graphs, all metric spaces in the catalogue have precompact Ramsey expansions (or lifts) with the expansion property. With two exceptions we can also characterise the existence of a stationary independence relation and the coherent EPPA. Our results can be seen as a new contribution to Ne\v{s}et\v{r}il's classification programme of Ramsey classes and as empirical evidence of the recent convergence in techniques employed to establish the Ramsey property, the expansion (or lift or ordering) property, EPPA and the existence of a stationary independence relation. At the heart of our proof is a canonical way of completing edge-labelled graphs to metric spaces in Cherlin's classes. The existence of such a "completion algorithm" then allows us to apply several strong results in the areas that imply EPPA and respectively the Ramsey property. The main results have numerous corollaries on the automorphism groups of the Fra\"iss\'e limits of the classes, such as amenability, unique ergodicity, existence of universal minimal flows, ample generics, small index property, 21-Bergman property and Serre's property (FA).Comment: 57 pages, 14 figures. Extends results of arXiv:1706.00295. Minor revisio

    COMs: Complexes of Oriented Matroids

    Full text link
    In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asymmetric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover, symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two fundamental properties (formulated for covectors) together lead to the natural notion of "conditional oriented matroid" (abbreviated COM). These novel structures can be characterized in terms of three cocircuits axioms, generalizing the familiar characterization for oriented matroids. We describe a binary composition scheme by which every COM can successively be erected as a certain complex of oriented matroids, in essentially the same way as a lopsided set can be glued together from its maximal hypercube faces. A realizable COM is represented by a hyperplane arrangement restricted to an open convex set. Among these are the examples formed by linear extensions of ordered sets, generalizing the oriented matroids corresponding to the permutohedra. Relaxing realizability to local realizability, we capture a wider class of combinatorial objects: we show that non-positively curved Coxeter zonotopal complexes give rise to locally realizable COMs.Comment: 40 pages, 6 figures, (improved exposition

    Branching Random Walks on Free Products of Groups

    Full text link
    We study certain phase transitions of branching random walks (BRW) on Cayley graphs of free products. The aim of this paper is to compare the size and structural properties of the trace, i.e., the subgraph that consists of all edges and vertices that were visited by some particle, with those of the original Cayley graph. We investigate the phase when the growth parameter λ\lambda is small enough such that the process survives but the trace is not the original graph. A first result is that the box-counting dimension of the boundary of the trace exists, is almost surely constant and equals the Hausdorff dimension which we denote by Φ(λ)\Phi(\lambda). The main result states that the function Φ(λ)\Phi(\lambda) has only one point of discontinuity which is at λc=R\lambda_{c}=R where RR is the radius of convergence of the Green function of the underlying random walk. Furthermore, Φ(R)\Phi(R) is bounded by one half the Hausdorff dimension of the boundary of the original Cayley graph and the behaviour of Φ(R)Φ(λ)\Phi(R)-\Phi(\lambda) as λR\lambda \uparrow R is classified. In the case of free products of infinite groups the end-boundary can be decomposed into words of finite and words of infinite length. We prove the existence of a phase transition such that if λλ~c\lambda\leq \tilde\lambda_{c} the end boundary of the trace consists only of infinite words and if λ>λ~c\lambda>\tilde\lambda_{c} it also contains finite words. In the last case, the Hausdorff dimension of the set of ends (of the trace and the original graph) induced by finite words is strictly smaller than the one of the ends induced by infinite words.Comment: 39 pages, 4 figures; final version, accepted for publication in the Proceedings of LM

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure
    corecore