843 research outputs found

    Popularity prediction for social media over arbitrary time horizons

    Get PDF
    Predicting the popularity of social media content in real time requires approaches that efficiently operate at global scale. Popularity prediction is important for many applications, including detection of harmful viral content to enable timely content moderation. The prediction task is difficult because views result from interactions between user interests, content features, resharing, feed ranking, and network structure. We consider the problem of accurately predicting popularity both at any given prediction time since a content item’s creation and for arbitrary time horizons into the future. In order to achieve high accuracy for different prediction time horizons, it is essential for models to use static features (of content and user) as well as observed popularity growth up to prediction time. We propose a feature-based approach based on a self-excited Hawkes point process model, which involves prediction of the con-tent’s popularity at one or more reference horizons in tandem with a point predictor of an effective growth parameter that reflects the timescale of popularity growth. This results in a highly scalable method for popularity prediction over arbitrary prediction time horizons that also achieves a high degree of accuracy, compared to several leading baselines, on a dataset of public page content on Facebook over a two-month period, covering billions of content views and hundreds of thousands of distinct content items. The model has shown competitive prediction accuracy against a strong baseline that consists of separately trained models for specific prediction time horizons

    Sequential Recommendation Based on Multivariate Hawkes Process Embedding With Attention.

    Full text link
    Recommender systems are important approaches for dealing with the information overload problem in the big data era, and various kinds of auxiliary information, including time and sequential information, can help improve the performance of retrieval and recommendation tasks. However, it is still a challenging problem how to fully exploit such information to achieve high-quality recommendation results and improve users' experience. In this work, we present a novel sequential recommendation model, called multivariate Hawkes process embedding with attention (MHPE-a), which combines a temporal point process with the attention mechanism to predict the items that the target user may interact with according to her/his historical records. Specifically, the proposed approach MHPE-a can model users' sequential patterns in their temporal interaction sequences accurately with a multivariate Hawkes process. Then, we perform an accurate sequential recommendation to satisfy target users' real-time requirements based on their preferences obtained with MHPE-a from their historical records. Especially, an attention mechanism is used to leverage users' long/short-term preferences adaptively to achieve an accurate sequential recommendation. Extensive experiments are conducted on two real-world datasets (lastfm and gowalla), and the results show that MHPE-a achieves better performance than state-of-the-art baselines

    Modeling Events and Interactions through Temporal Processes -- A Survey

    Full text link
    In real-world scenario, many phenomena produce a collection of events that occur in continuous time. Point Processes provide a natural mathematical framework for modeling these sequences of events. In this survey, we investigate probabilistic models for modeling event sequences through temporal processes. We revise the notion of event modeling and provide the mathematical foundations that characterize the literature on the topic. We define an ontology to categorize the existing approaches in terms of three families: simple, marked, and spatio-temporal point processes. For each family, we systematically review the existing approaches based based on deep learning. Finally, we analyze the scenarios where the proposed techniques can be used for addressing prediction and modeling aspects.Comment: Image replacement

    Scaling edge parameters for topic-awareness in information propagation

    Get PDF
    Social media platforms play a crucial role in regulating public discourse. Recognizing the importance of understanding this complex phenomenon a large body of research has been published in attempts to model how information spreads within these platforms. These models are termed information propagation models. The majority of the existing information propagation models attempt to capture the causal relationship between to two information spreading events through modeling the probabilities of information transmission between the two users or through capturing the temporal correlations that exist between the events. While these models have been successful in the past, they fail to capture the various properties that have emerged in the recent past. One emerging property that has been presented in the recent analysis is the role the content of information plays in regulating the patterns of information spread. Specifically, social scientists believe that in the presence of large amounts of information, users tend to interact with items that help confirm their own views. This thesis explores a possible method to incorporate user-specific and event-specific features to existing information propagation models by scaling the edge parameters. Through modeling the scaling factors to capture the phenomena of selective exposure due to confirmation bias, we showcase the ability of our approach to capturing complex social dynamics. Through experiments on both synthetic and real-world datasets, we validate the advantages that could be gained over the existing models. The presented approach exhibits clearly visible performance gains on the network recovery task and performed competitively against the baselines

    Modeling Time-Series and Spatial Data for Recommendations and Other Applications

    Full text link
    With the research directions described in this thesis, we seek to address the critical challenges in designing recommender systems that can understand the dynamics of continuous-time event sequences. We follow a ground-up approach, i.e., first, we address the problems that may arise due to the poor quality of CTES data being fed into a recommender system. Later, we handle the task of designing accurate recommender systems. To improve the quality of the CTES data, we address a fundamental problem of overcoming missing events in temporal sequences. Moreover, to provide accurate sequence modeling frameworks, we design solutions for points-of-interest recommendation, i.e., models that can handle spatial mobility data of users to various POI check-ins and recommend candidate locations for the next check-in. Lastly, we highlight that the capabilities of the proposed models can have applications beyond recommender systems, and we extend their abilities to design solutions for large-scale CTES retrieval and human activity prediction. A significant part of this thesis uses the idea of modeling the underlying distribution of CTES via neural marked temporal point processes (MTPP). Traditional MTPP models are stochastic processes that utilize a fixed formulation to capture the generative mechanism of a sequence of discrete events localized in continuous time. In contrast, neural MTPP combine the underlying ideas from the point process literature with modern deep learning architectures. The ability of deep-learning models as accurate function approximators has led to a significant gain in the predictive prowess of neural MTPP models. In this thesis, we utilize and present several neural network-based enhancements for the current MTPP frameworks for the aforementioned real-world applications.Comment: Ph.D. Thesis (2022

    Parameter-free Dynamic Graph Embedding for Link Prediction

    Full text link
    Dynamic interaction graphs have been widely adopted to model the evolution of user-item interactions over time. There are two crucial factors when modelling user preferences for link prediction in dynamic interaction graphs: 1) collaborative relationship among users and 2) user personalized interaction patterns. Existing methods often implicitly consider these two factors together, which may lead to noisy user modelling when the two factors diverge. In addition, they usually require time-consuming parameter learning with back-propagation, which is prohibitive for real-time user preference modelling. To this end, this paper proposes FreeGEM, a parameter-free dynamic graph embedding method for link prediction. Firstly, to take advantage of the collaborative relationships, we propose an incremental graph embedding engine to obtain user/item embeddings, which is an Online-Monitor-Offline architecture consisting of an Online module to approximately embed users/items over time, a Monitor module to estimate the approximation error in real time and an Offline module to calibrate the user/item embeddings when the online approximation errors exceed a threshold. Meanwhile, we integrate attribute information into the model, which enables FreeGEM to better model users belonging to some under represented groups. Secondly, we design a personalized dynamic interaction pattern modeller, which combines dynamic time decay with attention mechanism to model user short-term interests. Experimental results on two link prediction tasks show that FreeGEM can outperform the state-of-the-art methods in accuracy while achieving over 36X improvement in efficiency. All code and datasets can be found in https://github.com/FudanCISL/FreeGEM.Comment: 19 pages, 9 figures, 13 tables, Thirty-Sixth Conference on Neural Information Processing Systems (NeurIPS 2022), preprint versio
    • …
    corecore