133 research outputs found

    Quantum entanglement

    Get PDF
    All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory}. But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy. This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding. However, it appeared that this new resource is very complex and difficult to detect. Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure. This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying. In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations. They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon. A basic role of entanglement witnesses in detection of entanglement is emphasized.Comment: 110 pages, 3 figures, ReVTex4, Improved (slightly extended) presentation, updated references, minor changes, submitted to Rev. Mod. Phys

    Description of Quantum Entanglement with Nilpotent Polynomials

    Full text link
    We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed.Comment: 40 pages, 7 figures, 1 table, submitted for publication. v2: section II.E has been changed and the Appendix on "Four qubit sl-entanglement measure" has been removed. There are changes in the notation of section IV. Typos and language mistakes has been corrected. A figure has been added and a figure has been replaced. The references have been update

    Three qubits can be entangled in two inequivalent ways

    Get PDF
    Invertible local transformations of a multipartite system are used to define equivalence classes in the set of entangled states. This classification concerns the entanglement properties of a single copy of the state. Accordingly, we say that two states have the same kind of entanglement if both of them can be obtained from the other by means of local operations and classical communcication (LOCC) with nonzero probability. When applied to pure states of a three-qubit system, this approach reveals the existence of two inequivalent kinds of genuine tripartite entanglement, for which the GHZ state and a W state appear as remarkable representatives. In particular, we show that the W state retains maximally bipartite entanglement when any one of the three qubits is traced out. We generalize our results both to the case of higher dimensional subsystems and also to more than three subsystems, for all of which we show that, typically, two randomly chosen pure states cannot be converted into each other by means of LOCC, not even with a small probability of success.Comment: 12 pages, 1 figure; replaced with revised version; terminology adapted to earlier work; reference added; results unchange

    Local unitary equivalence and entanglement of multipartite pure states

    Full text link
    The necessary and sufficient conditions for the equivalence of arbitrary n-qubit pure quantum states under Local Unitary (LU) operations derived in [B. Kraus Phys. Rev. Lett. 104, 020504 (2010)] are used to determine the different LU-equivalence classes of up to five-qubit states. Due to this classification new parameters characterizing multipartite entanglement are found and their physical interpretation is given. Moreover, the method is used to derive examples of two n-qubit states (with n>2 arbitrary) which have the properties that all the entropies of any subsystem coincide, however, the states are neither LU-equivalent nor can be mapped into each other by general local operations and classical communication
    • …
    corecore