3,597 research outputs found

    Sheaf-Theoretic Stratification Learning from Geometric and Topological Perspectives

    Get PDF
    In this paper, we investigate a sheaf-theoretic interpretation of stratification learning from geometric and topological perspectives. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (2012), and the cohomology stratification algorithm given in Nanda (2017). Additionally, we give examples of stratifications based on the geometric techniques of Breiding et al. (2018), illustrating how the sheaf-theoretic approach can be used to study stratifications from both topological and geometric perspectives. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms

    Sheaf-Theoretic Stratification Learning

    Get PDF
    In this paper, we investigate a sheaf-theoretic interpretation of stratification learning. Motivated by the work of Alexandroff (1937) and McCord (1978), we aim to redirect efforts in the computational topology of triangulated compact polyhedra to the much more computable realm of sheaves on partially ordered sets. Our main result is the construction of stratification learning algorithms framed in terms of a sheaf on a partially ordered set with the Alexandroff topology. We prove that the resulting decomposition is the unique minimal stratification for which the strata are homogeneous and the given sheaf is constructible. In particular, when we choose to work with the local homology sheaf, our algorithm gives an alternative to the local homology transfer algorithm given in Bendich et al. (2012), and the cohomology stratification algorithm given in Nanda (2017). We envision that our sheaf-theoretic algorithm could give rise to a larger class of stratification beyond homology-based stratification. This approach also points toward future applications of sheaf theory in the study of topological data analysis by illustrating the utility of the language of sheaf theory in generalizing existing algorithms

    Approximating Local Homology from Samples

    Full text link
    Recently, multi-scale notions of local homology (a variant of persistent homology) have been used to study the local structure of spaces around a given point from a point cloud sample. Current reconstruction guarantees rely on constructing embedded complexes which become difficult in high dimensions. We show that the persistence diagrams used for estimating local homology, can be approximated using families of Vietoris-Rips complexes, whose simple constructions are robust in any dimension. To the best of our knowledge, our results, for the first time, make applications based on local homology, such as stratification learning, feasible in high dimensions.Comment: 23 pages, 14 figure

    Local cohomology and stratification

    Full text link
    We outline an algorithm to recover the canonical (or, coarsest) stratification of a given finite-dimensional regular CW complex into cohomology manifolds, each of which is a union of cells. The construction proceeds by iteratively localizing the poset of cells about a family of subposets; these subposets are in turn determined by a collection of cosheaves which capture variations in cohomology of cellular neighborhoods across the underlying complex. The result is a nested sequence of categories, each containing all the cells as its set of objects, with the property that two cells are isomorphic in the last category if and only if they lie in the same canonical stratum. The entire process is amenable to efficient distributed computation.Comment: Final version, published in Foundations of Computational Mathematic

    Dimension Detection with Local Homology

    Full text link
    Detecting the dimension of a hidden manifold from a point sample has become an important problem in the current data-driven era. Indeed, estimating the shape dimension is often the first step in studying the processes or phenomena associated to the data. Among the many dimension detection algorithms proposed in various fields, a few can provide theoretical guarantee on the correctness of the estimated dimension. However, the correctness usually requires certain regularity of the input: the input points are either uniformly randomly sampled in a statistical setting, or they form the so-called (ε,δ)(\varepsilon,\delta)-sample which can be neither too dense nor too sparse. Here, we propose a purely topological technique to detect dimensions. Our algorithm is provably correct and works under a more relaxed sampling condition: we do not require uniformity, and we also allow Hausdorff noise. Our approach detects dimension by determining local homology. The computation of this topological structure is much less sensitive to the local distribution of points, which leads to the relaxation of the sampling conditions. Furthermore, by leveraging various developments in computational topology, we show that this local homology at a point zz can be computed \emph{exactly} for manifolds using Vietoris-Rips complexes whose vertices are confined within a local neighborhood of zz. We implement our algorithm and demonstrate the accuracy and robustness of our method using both synthetic and real data sets

    Persistent Intersection Homology for the Analysis of Discrete Data

    Full text link
    Topological data analysis is becoming increasingly relevant to support the analysis of unstructured data sets. A common assumption in data analysis is that the data set is a sample---not necessarily a uniform one---of some high-dimensional manifold. In such cases, persistent homology can be successfully employed to extract features, remove noise, and compare data sets. The underlying problems in some application domains, however, turn out to represent multiple manifolds with different dimensions. Algebraic topology typically analyzes such problems using intersection homology, an extension of homology that is capable of handling configurations with singularities. In this paper, we describe how the persistent variant of intersection homology can be used to assist data analysis in visualization. We point out potential pitfalls in approximating data sets with singularities and give strategies for resolving them.Comment: Topology-based Methods in Visualization 201

    Stratified Space Learning: Reconstructing Embedded Graphs

    Full text link
    Many data-rich industries are interested in the efficient discovery and modelling of structures underlying large data sets, as it allows for the fast triage and dimension reduction of large volumes of data embedded in high dimensional spaces. The modelling of these underlying structures is also beneficial for the creation of simulated data that better represents real data. In particular, for systems testing in cases where the use of real data streams might prove impractical or otherwise undesirable. We seek to discover and model the structure by combining methods from topological data analysis with numerical modelling. As a first step in combining these two areas, we examine the recovery of the abstract graph GG structure, and model a linear embedding ∣G∣|G| given only a noisy point cloud sample XX of ∣G∣|G|.Comment: 7 pages, 3 figures, accepted for MODSIM 2019 conferenc
    • …
    corecore