1,348 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    preliminary clinical evaluation of the ASTRA4D algorithm

    Get PDF
    Objectives. To propose and evaluate a four-dimensional (4D) algorithm for joint motion elimination and spatiotemporal noise reduction in low-dose dynamic myocardial computed tomography perfusion (CTP). Methods. Thirty patients with suspected or confirmed coronary artery disease were prospectively included und underwent dynamic contrast-enhanced 320-row CTP. The presented deformable image registration method ASTRA4D identifies a low-dimensional linear model of contrast propagation (by principal component analysis, PCA) of the ex-ante temporally smoothed time-intensity curves (by local polynomial regression). Quantitative (standard deviation, signal-to-noise ratio (SNR), temporal variation, volumetric deformation) and qualitative (motion, contrast, contour sharpness; 1, poor; 5, excellent) measures of CTP quality were assessed for the original and motion-compensated volumes (without and with temporal filtering, PCA/ASTRA4D). Following visual myocardial perfusion deficit detection by two readers, diagnostic accuracy was evaluated using 1.5T magnetic resonance (MR) myocardial perfusion imaging as the reference standard in 15 patients. Results. Registration using ASTRA4D was successful in all 30 patients and resulted in comparison with the benchmark PCA in significantly (p<0.001) reduced noise over time (-83%, 178.5 vs 29.9) and spatially (-34%, 21.4 vs 14.1) as well as improved SNR (+47%, 3.6 vs 5.3) and subjective image quality (motion, contrast, contour sharpness: +1.0, +1.0, +0.5). ASTRA4D resulted in significantly improved per-segment sensitivity of 91% (58/64) and similar specificity of 96% (429/446) compared with PCA (52%, 33/64; 98%, 435/446; p=0.011) and the original sequence (45%, 29/64; 98%, 438/446; p=0.003) in the visual detection of perfusion deficits. Conclusions. The proposed functional approach to temporal denoising and morphologic alignment was shown to improve quality metrics and sensitivity of 4D CTP in the detection of myocardial ischemia.Zielsetzung. Die Entwicklung und Bewertung einer Methode zur simultanen Rauschreduktion und Bewegungskorrektur für niedrig dosierte dynamische CT Myokardperfusion. Methoden. Dreißig prospektiv eingeschlossene Patienten mit vermuteter oder bestätigter koronarer Herzkrankheit wurden einer dynamischen CT Myokardperfusionsuntersuchung unterzogen. Die präsentierte Registrierungsmethode ASTRA4D ermittelt ein niedrigdimensionales Modell des Kontrastmittelflusses (mittels einer Hauptkomponentenanalyse, PCA) der vorab zeitlich geglätteten Intensitätskurven (mittels lokaler polynomialer Regression). Quantitative (Standardabweichung, Signal-Rausch-Verhältnis (SNR), zeitliche Schwankung, räumliche Verformung) und qualitative (Bewegung, Kontrast, Kantenschärfe; 1, schlecht; 5, ausgezeichnet) Kennzahlen der unbearbeiteten und bewegungskorrigierten Perfusionsdatensätze (ohne und mit zeitlicher Glättung PCA/ASTRA4D) wurden ermittelt. Nach visueller Beurteilung von myokardialen Perfusionsdefiziten durch zwei Radiologen wurde die diagnostische Genauigkeit im Verhältnis zu 1.5T Magnetresonanztomographie in 15 Patienten ermittelt. Resultate. Bewegungskorrektur mit ASTRA4D war in allen 30 Patienten erfolgreich und resultierte im Vergleich mit der PCA Methode in signifikant (p<0.001) verringerter zeitlicher Schwankung (-83%, 178.5 gegenüber 29.9) und räumlichem Rauschen (-34%, 21.4 gegenüber 14.1) sowie verbesserter SNR (+47%, 3.6 gegenüber 5.3) und subjektiven Qualitätskriterien (Bewegung, Kontrast, Kantenschärfe: +1.0, +1.0, +0.5). ASTRA4D resultierte in signifikant verbesserter segmentweiser Sensitivität 91% (58/64) und ähnlicher Spezifizität 96% (429/446) verglichen mit der PCA Methode (52%, 33/64; 98%, 435/446; p=0.011) und dem unbearbeiteten Perfusionsdatensatz (45%, 29/64; 98%, 438/446; p=0.003) in der visuellen Beurteilung von myokardialen Perfusionsdefiziten. Schlussfolgerungen. Der vorgeschlagene funktionale Ansatz zur simultanen Rauschreduktion und Bewegungskorrektur verbesserte Qualitätskriterien und Sensitivität von dynamischer CT Perfusion in der visuellen Erkennung von Myokardischämie

    Peak Trekking of Hierarchy Mountain for the Detection of Cerebral Aneurysm using Modified Hough Circle Transform

    Get PDF
    The Circle of Willis is in the junction of two carotid arteries and two vertebral arteries that supply the brain with nutrition. Junctions where these arteries come together may develop weak spots that can balloon out and fill with blood, creating aneurysms. These sac-like areas may leak or rupture, spilling blood into surrounding tissues which may cause artery spasm leading to potential stroke or even death. Clipping and coiling are two treatment options preferred by neurosurgeon which require proper detection of aneurysm. Medical practitioners are therefore emphasizing on the prior detection of cerebral aneurysm (CA) before rupture occurs leading to subarachnoid haemorrhage (SAH). This paper presents a novel method by application of Modified Hough Circle Transform & Peak Trekking (MHCT-PT) technique on the image extracted from Digital subtraction angiography (DSA). Experimental results have firmly substantiated that the proposed method is highly efficient in properly detecting the location, size and type of aneurysm

    Peak Trekking of Hierarchy Mountain for the Detection of Cerebral Aneurysm using Modified Hough Circle Transform

    Get PDF
    The Circle of Willis is in the junction of two carotid arteries and two vertebral arteries that supply the brain with nutrition. Junctions where these arteries come together may develop weak spots that can balloon out and fill with blood, creating aneurysms. These sac-like areas may leak or rupture, spilling blood into surrounding tissues which may cause artery spasm leading to potential stroke or even death. Clipping and coiling are two treatment options preferred by neurosurgeon which require proper detection of aneurysm. Medical practitioners are therefore emphasizing on the prior detection of cerebral aneurysm (CA) before rupture occurs leading to subarachnoid haemorrhage (SAH). This paper presents a novel method by application of Modified Hough Circle Transform & Peak Trekking (MHCT-PT) technique on the image extracted from Digital subtraction angiography (DSA). Experimental results have firmly substantiated that the proposed method is highly efficient in properly detecting the location, size and type of aneurysm

    Cerebrovascular segmentation from MRA images

    Get PDF
    There is provided a method of processing a cerebrovascular medical image, the method comprising receiving magnetic resonance angiography (MRA) image associated with a cerebrovascular tissue comprising blood vessels and brain tissues other than blood vessels; segmenting MRA image using a prior appearance model for generating first prior appearance features representing a first-order prior appearance model and second appearance features representing a second-order prior appearance model of the cerebrovascular tissue, wherein current appearance model comprises a 3D Markov-Gibbs Random Field (MGRF) having a 2D rotational and translational symmetry such that MGRF model is 2D rotation and translation invariant; segmenting MRA image using current appearance model for generating current appearance features distinguishing blood vessels from other brain tissues; adjusting MRA image using first and second prior appearance features and current appearance futures; and generating an enhanced MRA image based on said adjustment. There is also provided a system for doing the same. Application US16/159,790 events 2018-10-15 Application filed by Zayed University 2018-10-15 Priority to US16/159,790 2018-10-15 Assigned to Zayed University 2020-04-16 Publication of US20200116808A1 2020-09-08 Application granted 2020-09-08 Publication of US10768259B2 Status Active 2039-03-02 Adjusted expiratio

    Advanced Brain Tumour Segmentation from MRI Images

    Get PDF
    Magnetic resonance imaging (MRI) is widely used medical technology for diagnosis of various tissue abnormalities, detection of tumors. The active development in the computerized medical image segmentation has played a vital role in scientific research. This helps the doctors to take necessary treatment in an easy manner with fast decision making. Brain tumor segmentation is a hot point in the research field of Information technology with biomedical engineering. The brain tumor segmentation is motivated by assessing tumor growth, treatment responses, computer-based surgery, treatment of radiation therapy, and developing tumor growth models. Therefore, computer-aided diagnostic system is meaningful in medical treatments to reducing the workload of doctors and giving the accurate results. This chapter explains the causes, awareness of brain tumor segmentation and its classification, MRI scanning process and its operation, brain tumor classifications, and different segmentation methodologies

    Automatic Spatiotemporal Analysis of Cardiac Image Series

    Get PDF
    RÉSUMÉ À ce jour, les maladies cardiovasculaires demeurent au premier rang des principales causes de décès en Amérique du Nord. Chez l’adulte et au sein de populations de plus en plus jeunes, la soi-disant épidémie d’obésité entraînée par certaines habitudes de vie tels que la mauvaise alimentation, le manque d’exercice et le tabagisme est lourde de conséquences pour les personnes affectées, mais aussi sur le système de santé. La principale cause de morbidité et de mortalité chez ces patients est l’athérosclérose, une accumulation de plaque à l’intérieur des vaisseaux sanguins à hautes pressions telles que les artères coronaires. Les lésions athérosclérotiques peuvent entraîner l’ischémie en bloquant la circulation sanguine et/ou en provoquant une thrombose. Cela mène souvent à de graves conséquences telles qu’un infarctus. Outre les problèmes liés à la sténose, les parois artérielles des régions criblées de plaque augmentent la rigidité des parois vasculaires, ce qui peut aggraver la condition du patient. Dans la population pédiatrique, la pathologie cardiovasculaire acquise la plus fréquente est la maladie de Kawasaki. Il s’agit d’une vasculite aigüe pouvant affecter l’intégrité structurale des parois des artères coronaires et mener à la formation d’anévrismes. Dans certains cas, ceux-ci entravent l’hémodynamie artérielle en engendrant une perfusion myocardique insuffisante et en activant la formation de thromboses. Le diagnostic de ces deux maladies coronariennes sont traditionnellement effectués à l’aide d’angiographies par fluoroscopie. Pendant ces examens paracliniques, plusieurs centaines de projections radiographiques sont acquises en séries suite à l’infusion artérielle d’un agent de contraste. Ces images révèlent la lumière des vaisseaux sanguins et la présence de lésions potentiellement pathologiques, s’il y a lieu. Parce que les séries acquises contiennent de l’information très dynamique en termes de mouvement du patient volontaire et involontaire (ex. battements cardiaques, respiration et déplacement d’organes), le clinicien base généralement son interprétation sur une seule image angiographique où des mesures géométriques sont effectuées manuellement ou semi-automatiquement par un technicien en radiologie. Bien que l’angiographie par fluoroscopie soit fréquemment utilisé partout dans le monde et souvent considéré comme l’outil de diagnostic “gold-standard” pour de nombreuses maladies vasculaires, la nature bidimensionnelle de cette modalité d’imagerie est malheureusement très limitante en termes de spécification géométrique des différentes régions pathologiques. En effet, la structure tridimensionnelle des sténoses et des anévrismes ne peut pas être pleinement appréciée en 2D car les caractéristiques observées varient selon la configuration angulaire de l’imageur. De plus, la présence de lésions affectant les artères coronaires peut ne pas refléter la véritable santé du myocarde, car des mécanismes compensatoires naturels (ex. vaisseaux----------ABSTRACT Cardiovascular disease continues to be the leading cause of death in North America. In adult and, alarmingly, ever younger populations, the so-called obesity epidemic largely driven by lifestyle factors that include poor diet, lack of exercise and smoking, incurs enormous stresses on the healthcare system. The primary cause of serious morbidity and mortality for these patients is atherosclerosis, the build up of plaque inside high pressure vessels like the coronary arteries. These lesions can lead to ischemic disease and may progress to precarious blood flow blockage or thrombosis, often with infarction or other severe consequences. Besides the stenosis-related outcomes, the arterial walls of plaque-ridden regions manifest increased stiffness, which may exacerbate negative patient prognosis. In pediatric populations, the most prevalent acquired cardiovascular pathology is Kawasaki disease. This acute vasculitis may affect the structural integrity of coronary artery walls and progress to aneurysmal lesions. These can hinder the blood flow’s hemodynamics, leading to inadequate downstream perfusion, and may activate thrombus formation which may lead to precarious prognosis. Diagnosing these two prominent coronary artery diseases is traditionally performed using fluoroscopic angiography. Several hundred serial x-ray projections are acquired during selective arterial infusion of a radiodense contrast agent, which reveals the vessels’ luminal area and possible pathological lesions. The acquired series contain highly dynamic information on voluntary and involuntary patient movement: respiration, organ displacement and heartbeat, for example. Current clinical analysis is largely limited to a single angiographic image where geometrical measures will be performed manually or semi-automatically by a radiological technician. Although widely used around the world and generally considered the gold-standard diagnosis tool for many vascular diseases, the two-dimensional nature of this imaging modality is limiting in terms of specifying the geometry of various pathological regions. Indeed, the 3D structures of stenotic or aneurysmal lesions may not be fully appreciated in 2D because their observable features are dependent on the angular configuration of the imaging gantry. Furthermore, the presence of lesions in the coronary arteries may not reflect the true health of the myocardium, as natural compensatory mechanisms may obviate the need for further intervention. In light of this, cardiac magnetic resonance perfusion imaging is increasingly gaining attention and clinical implementation, as it offers a direct assessment of myocardial tissue viability following infarction or suspected coronary artery disease. This type of modality is plagued, however, by motion similar to that present in fluoroscopic imaging. This issue predisposes clinicians to laborious manual intervention in order to align anatomical structures in sequential perfusion frames, thus hindering automation o
    • …
    corecore