548 research outputs found

    Controllability and motion planning of a multibody Chaplygin's sphere and Chaplygin's top

    Full text link
    This paper studies local configuration controllability of multibody systems with nonholonomic constraints. As a nontrivial example of the theory, we consider the dynamics and control of a multibody spherical robot. Internal rotors and sliders are used as the mechanisms for control. Our model is based on equations developed by the second author for certain mechanical systems with nonholonomic constraints, e.g. Chaplygin's sphere and Chaplygin's top in particular, and the multibody framework for unconstrained mechanical systems developed by the first and third authors. Recent methods for determining controllability and path planning for multibody systems with symmetry are extended to treat a class of mechanical systems with nonholonomic constraints. Specificresults on the controllability and path planning of the spherical robot model are presented. Copyright © 2007 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58647/1/1259_ftp.pd

    Reorientation of space multibody systems maintaining zero angular momentum

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76887/1/AIAA-1991-2747-874.pd

    Efficient Reorientation Maneuvers for Spacecraft with Multiple Articulated Payloads

    Get PDF
    A final report is provided which describes the research program during the period 3 Mar. 1992 to 3 Jun. 1993. A summary of the technical research questions that were studied and of the main results that were obtained is given. The specific outcomes of the research program, including both educational impacts as well as research publications, are listed. The research is concerned with efficient reorientation maneuvers for spacecraft with multiple articulated payloads

    Centrifugally Stiffened Rotor: Eternal Flight as the Solution for 'X': NIAC Phase I Final Report

    Get PDF
    Flight has always captured man's imagination. This is evidenced by the great variety of aerial vehicles that exist today. Everything from fixed-wing to rotorcraft; satellites to spaceships;mono-wing to quadrotor. However, despite the wide variety of flying vehicles, not one of them has attained eternal flight. Accomplishing this feat is one of the great challenges still facing the aviation community. Motivation Achieving eternal flight opens the doors to atmospheric satellites. Existing satellites have a great number of capabilities that enrich our lives; however,their distance from the surface of the earth precludes certain types of transmission capabilities. Once eternal flight is achieved, that vehicle can serve the same role as ordinary satellites, but its close proximity will allow for real time two way communications,like wireless broadband internet. And with active controls, atmospheric satellites would not be constrained to geosynchronous orbits, like our existing satellite technology. Many projects are under way to achieve this goal;however, most of these research efforts follow the same design methodology, and have exhausted the limits of this particular design. This concept introduces a completely new aerial vehicle structure,which uses the best features of fixed-wing and rotorcraft designs. Combining the best features of different classes of aircraft, expands the capabilities beyond what either one can achieve on its own

    Dynamics and Control of Higher-order Nonholonomic Systems

    Get PDF
    A theoretical framework is established for the control of higher-order nonholonomic systems, defined as systems that satisfy higher-order nonintegrable constraints. A model for such systems is developed in terms of differential-algebraic equations defined on a higher-order tangent bundle. A number of control-theoretic properties such as nonintegrability, controllability, and stabilizability are presented. Higher-order nonholonomic systems are shown to be strongly accessible and, under certain conditions, small time locally controllable at any equilibrium. There are important examples of higher-order nonholonomic systems that are asymptotically stabilizable via smooth feedback, including space vehicles with multiple slosh modes and Prismatic-Prismatic-Revolute (PPR) robots moving open liquid containers, as well as an interesting class of systems that do not admit asymptotically stabilizing continuous static or dynamic state feedback. Specific assumptions are introduced to define this class, which includes important examples of robotic systems. A discontinuous nonlinear feedback control algorithm is developed to steer any initial state to the equilibrium at the origin. The applicability of the theoretical development is illustrated through two examples: control of a planar PPR robot manipulator subject to a jerk constraint and control of a point mass moving on a constant torsion curve in a three dimensional space

    Advanced Concept Modeling

    Get PDF
    Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services

    Steering for a Class of Dynamic Nonholonomic Systems

    Get PDF
    In this paper we derive control algorithms for a class of dynamic nonholonomic steering problems, characterized as mechanical systems with nonholonomic constraints and symmetries. Recent research in geometric mechanics has led to a single, simplified framework that describes this class of systems, which includes examples such as wheeled mobile robots; undulatory robotic and biological locomotion systems, such as paramecia, inchworms, and snakes; and the reorientation of satellites and underwater vehicles. This geometric framework has also been applied to more unusual examples, such as the snakeboard robot, bicycles, the wobblestone, and the reorientation of a falling cat. We use this geometric framework as a basis for developing two types of control algorithms for such systems. The first is geared towards local controllability, using a perturbation approach to establish results similar to steering using sinusoids. The second method utilizes these results in applying more traditional steering algorithms for mobile robots, and is directed towards generating more non-local control methods of steering for this class of systems

    Control oriented modelling of an integrated attitude and vibration suppression architecture for large space structures

    Get PDF
    This thesis is divided into two parts. The main focus of the research, namely active vibration control for large flexible spacecraft, is exposed in Part I and, in parallel, the topic of machine learning techniques for modern space applications is described in Part II. In particular, this thesis aims at proposing an end-to-end general architecture for an integrated attitude-vibration control system, starting from the design of structural models to the synthesis of the control laws. To this purpose, large space structures based on realistic missions are investigated as study cases, in accordance with the tendency of increasing the size of the scientific instruments to improve their sensitivity, being the drawback an increase of its overall flexibility. An active control method is therefore investigated to guarantee satisfactory pointing and maximum deformation by avoiding classical stiffening methods. Therefore, the instrument is designed to be supported by an active deployable frame hosting an optimal minimum set of collocated smart actuators and sensors. Different spatial configurations for the placement of the distributed network of active devices are investigated, both at closed-loop and open-loop levels. Concerning closed-loop techniques, a method to optimally place the poles of the system via a Direct Velocity Feedback (DVF) controller is proposed to identify simultaneously the location and number of active devices for vibration control with an in-cascade optimization technique. Then, two general and computationally efficient open-loop placement techniques, namely Gramian and Modal Strain Energy (MSE)-based methods, are adopted as opposed to heuristic algorithms, which imply high computational costs and are generally not suitable for high-dimensional systems, to propose a placement architecture for generically shaped tridimensional space structures. Then, an integrated robust control architecture for the spacecraft is presented as composed of both an attitude control scheme and a vibration control system. To conclude the study, attitude manoeuvres are performed to excite main flexible modes and prove the efficacy of both attitude and vibration control architectures. Moreover, Part II is dedicated to address the problem of improving autonomy and self-awareness of modern spacecraft, by using machine-learning based techniques to carry out Failure Identification for large space structures and improving the pointing performance of spacecraft (both flexible satellite with sloshing models and small rigid platforms) when performing repetitive Earth Observation manoeuvres
    corecore