256,384 research outputs found

    State Estimation for Distributed and Hybrid Systems

    Get PDF
    This thesis deals with two aspects of recursive state estimation: distributed estimation and estimation for hybrid systems. In the first part, an approximate distributed Kalman filter is developed. Nodes update their state estimates by linearly combining local measurements and estimates from their neighbors. This scheme allows nodes to save energy, thus prolonging their lifetime, compared to centralized information processing. The algorithm is evaluated experimentally as part of an ultrasound based positioning system. The first part also contains an example of a sensor-actuator network, where a mobile robot navigates using both local sensors and information from a sensor network. This system was implemented using a component-based framework. The second part develops, a recursive joint maximum a posteriori state estimation scheme for Markov jump linear systems. The estimation problem is reformulated as dynamic programming and then approximated using so called relaxed dynamic programming. This allows the otherwise exponential complexity to be kept at manageable levels. Approximate dynamic programming is also used to develop a sensor scheduling algorithm for linear systems. The algorithm produces an offline schedule that when used together with a Kalman filter minimizes the estimation error covariance

    Dynamic Algorithms for the Massively Parallel Computation Model

    Get PDF
    The Massive Parallel Computing (MPC) model gained popularity during the last decade and it is now seen as the standard model for processing large scale data. One significant shortcoming of the model is that it assumes to work on static datasets while, in practice, real-world datasets evolve continuously. To overcome this issue, in this paper we initiate the study of dynamic algorithms in the MPC model. We first discuss the main requirements for a dynamic parallel model and we show how to adapt the classic MPC model to capture them. Then we analyze the connection between classic dynamic algorithms and dynamic algorithms in the MPC model. Finally, we provide new efficient dynamic MPC algorithms for a variety of fundamental graph problems, including connectivity, minimum spanning tree and matching.Comment: Accepted to the 31st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2019

    System Support for Managing Invalid Bindings

    Full text link
    Context-aware adaptation is a central aspect of pervasive computing applications, enabling them to adapt and perform tasks based on contextual information. One of the aspects of context-aware adaptation is reconfiguration in which bindings are created between application component and remote services in order to realize new behaviour in response to contextual information. Various research efforts provide reconfiguration support and allow the development of adaptive context-aware applications from high-level specifications, but don't consider failure conditions that might arise during execution of such applications, making bindings between application and remote services invalid. To this end, we propose and implement our design approach to reconfiguration to manage invalid bindings. The development and modification of adaptive context-aware applications is a complex task, and an issue of an invalidity of bindings further complicates development efforts. To reduce the development efforts, our approach provides an application-transparent solution where the issue of the invalidity of bindings is handled by our system, Policy-Based Contextual Reconfiguration and Adaptation (PCRA), not by an application developer. In this paper, we present and describe our approach to managing invalid bindings and compare it with other approaches to this problem. We also provide performance evaluation of our approach

    The SATIN component system - a metamodel for engineering adaptable mobile systems

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, and more capable. We argue that mobile systems should be able to adapt to changing requirements and execution environments. Adaptation requires the ability-to reconfigure the deployed code base on a mobile device. Such reconfiguration is considerably simplified if mobile applications are component-oriented rather than monolithic blocks of code. We present the SATIN (system adaptation targeting integrated networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives to reconfigure the software system by dynamically transferring code. The metamodel is implemented in the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives defined in the metamodel to reconfigure both itself and applications that it hosts. We demonstrate the suitability of SATIN in terms of lightweightedness, flexibility, and reusability for the creation of adaptable mobile systems by using it to implement, port, and evaluate a number of existing and new applications, including an active network platform developed for satellite communication at the European space agency. These applications exhibit different aspects of adaptation and demonstrate the flexibility of the approach and the advantages gaine

    CATS: linearizability and partition tolerance in scalable and self-organizing key-value stores

    Get PDF
    Distributed key-value stores provide scalable, fault-tolerant, and self-organizing storage services, but fall short of guaranteeing linearizable consistency in partially synchronous, lossy, partitionable, and dynamic networks, when data is distributed and replicated automatically by the principle of consistent hashing. This paper introduces consistent quorums as a solution for achieving atomic consistency. We present the design and implementation of CATS, a distributed key-value store which uses consistent quorums to guarantee linearizability and partition tolerance in such adverse and dynamic network conditions. CATS is scalable, elastic, and self-organizing; key properties for modern cloud storage middleware. Our system shows that consistency can be achieved with practical performance and modest throughput overhead (5%) for read-intensive workloads

    Parallel ACO with a Ring Neighborhood for Dynamic TSP

    Full text link
    The current paper introduces a new parallel computing technique based on ant colony optimization for a dynamic routing problem. In the dynamic traveling salesman problem the distances between cities as travel times are no longer fixed. The new technique uses a parallel model for a problem variant that allows a slight movement of nodes within their Neighborhoods. The algorithm is tested with success on several large data sets.Comment: 8 pages, 1 figure; accepted J. Information Technology Researc
    • …
    corecore