45,095 research outputs found

    Exemplar Based Deep Discriminative and Shareable Feature Learning for Scene Image Classification

    Full text link
    In order to encode the class correlation and class specific information in image representation, we propose a new local feature learning approach named Deep Discriminative and Shareable Feature Learning (DDSFL). DDSFL aims to hierarchically learn feature transformation filter banks to transform raw pixel image patches to features. The learned filter banks are expected to: (1) encode common visual patterns of a flexible number of categories; (2) encode discriminative information; and (3) hierarchically extract patterns at different visual levels. Particularly, in each single layer of DDSFL, shareable filters are jointly learned for classes which share the similar patterns. Discriminative power of the filters is achieved by enforcing the features from the same category to be close, while features from different categories to be far away from each other. Furthermore, we also propose two exemplar selection methods to iteratively select training data for more efficient and effective learning. Based on the experimental results, DDSFL can achieve very promising performance, and it also shows great complementary effect to the state-of-the-art Caffe features.Comment: Pattern Recognition, Elsevier, 201

    Improving Person Re-identification by Attribute and Identity Learning

    Full text link
    Person re-identification (re-ID) and attribute recognition share a common target at learning pedestrian descriptions. Their difference consists in the granularity. Most existing re-ID methods only take identity labels of pedestrians into consideration. However, we find the attributes, containing detailed local descriptions, are beneficial in allowing the re-ID model to learn more discriminative feature representations. In this paper, based on the complementarity of attribute labels and ID labels, we propose an attribute-person recognition (APR) network, a multi-task network which learns a re-ID embedding and at the same time predicts pedestrian attributes. We manually annotate attribute labels for two large-scale re-ID datasets, and systematically investigate how person re-ID and attribute recognition benefit from each other. In addition, we re-weight the attribute predictions considering the dependencies and correlations among the attributes. The experimental results on two large-scale re-ID benchmarks demonstrate that by learning a more discriminative representation, APR achieves competitive re-ID performance compared with the state-of-the-art methods. We use APR to speed up the retrieval process by ten times with a minor accuracy drop of 2.92% on Market-1501. Besides, we also apply APR on the attribute recognition task and demonstrate improvement over the baselines.Comment: Accepted to Pattern Recognition (PR

    Local Deep Neural Networks for gender recognition

    Full text link
    Deep learning methods are able to automatically discover better representations of the data to improve the performance of the classifiers. However, in computer vision tasks, such as the gender recognition problem, sometimes it is difficult to directly learn from the entire image. In this work we propose a new model called Local Deep Neural Network (Local-DNN), which is based on two key concepts: local features and deep architectures. The model learns from small overlapping regions in the visual field using discriminative feed forward networks with several layers. We evaluate our approach on two well-known gender benchmarks, showing that our Local-DNN outperforms other deep learning methods also evaluated and obtains state-of-the-art results in both benchmarks. (C) 2015 Elsevier B.V. All rights reserved.This work was financially supported by the Ministerio de Ciencia e Innovacin (Spain), Plan Nacional de I-D+i, TEC2009-09146, and the FPI grant BES-2010-032945.Mansanet Sandín, J.; Albiol Colomer, A.; Paredes Palacios, R. (2016). Local Deep Neural Networks for gender recognition. Pattern Recognition Letters. 70:80-86. https://doi.org/10.1016/j.patrec.2015.11.015S80867
    corecore